BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12116121)

  • 1. Quantitative structure-mobility relationship modelling of electrokinetic chromatography of metal complexes: approaches and limitations.
    Timerbaev AR; Semenova OP; Petrukhin OM
    Electrophoresis; 2002 Jun; 23(12):1786-95. PubMed ID: 12116121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of quantitative structure-activity relationships for interpretation of the migration behavior of neutral platinum(II) complexes in microemulsion electrokinetic chromatography.
    Oszwałdowski S; Timerbaev AR
    J Chromatogr A; 2007 Apr; 1146(2):258-63. PubMed ID: 17306810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of very hydrophobic analytes by micellar electrokinetic chromatography IV. Modeling of the effective electrophoretic mobility from carbon number equivalents and octanol-water partition coefficients.
    Huhn C; Pyell U
    J Chromatogr A; 2008 Jul; 1198-1199():208-14. PubMed ID: 18514210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An advanced application of the quantitative structure-activity relationship concept in electrokinetic chromatography of metal complexes.
    Oszwałdowski S; Timerbaev AR
    Electrophoresis; 2008 Feb; 29(4):827-34. PubMed ID: 18219650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deconvolution of electrokinetic and chromatographic contributions to solute migration in stereoselective ion-exchange capillary electrochromatography on monolithic silica capillary columns.
    Preinerstorfer B; Lämmerhofer M; Hoffmann CV; Lubda D; Lindner W
    J Sep Sci; 2008 Sep; 31(16-17):3065-78. PubMed ID: 18428190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micellar electrokinetic chromatography for high-performance analytical separation.
    Terabe S
    Chem Rec; 2008; 8(5):291-301. PubMed ID: 18956478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation of separation selectivity for alkali metals and ammonium in ion-exchange capillary electrochromatography using a suspension of cation exchange particles in the electrolyte as a pseudostationary phase.
    Breadmore MC; Macka M; Haddad PR
    Electrophoresis; 1999 Jul; 20(10):1987-92. PubMed ID: 10451106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imidazolium-based ionic liquid-type surfactant as pseudostationary phase in micellar electrokinetic chromatography of highly hydrophilic urinary nucleosides.
    Rageh AH; Pyell U
    J Chromatogr A; 2013 Nov; 1316():135-46. PubMed ID: 24119753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of very hydrophobic analytes by micellar electrokinetic chromatography. III. Characterization and optimization of the composition of the separation electrolyte using carbon number equivalents.
    Huhn C; Pütz M; Pyell U
    Electrophoresis; 2008 Feb; 29(4):783-95. PubMed ID: 18213601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutral analyte focusing by micelle collapse in micellar electrokinetic chromatography.
    Quirino JP
    J Chromatogr A; 2008 Dec; 1214(1-2):171-7. PubMed ID: 18990396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the retention factor for weak acids in micellar electrokinetic chromatography with cationic surfactant via variation of the chloride concentration.
    Orentaitė I; Maruška A; Pyell U
    Electrophoresis; 2011 Feb; 32(5):604-13. PubMed ID: 21290391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the nature of the forces controlling selectivity in the high performance capillary electrochromatographic separation of peptides.
    Walhagen K; Huber MI; Hennessy TP; Hearn MT
    Biopolymers; 2003; 71(4):429-53. PubMed ID: 14517897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative description of analyte migration behavior based on dynamic complexation in capillary electrophoresis with one or more additives.
    Peng X; Bowser MT; Britz-McKibbin P; Bebault GM; Morris JR; Chen DD
    Electrophoresis; 1997 May; 18(5):706-16. PubMed ID: 9194595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent developments in capillary electrokinetic chromatography with replaceable charged pseudostationary phases or additives.
    Peric I; Kenndler E
    Electrophoresis; 2003 Sep; 24(17):2924-34. PubMed ID: 12973795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microemulsion electrokinetic chromatography.
    Buchberger WW
    Methods Mol Biol; 2008; 384():717-33. PubMed ID: 18392591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An extended description of the effect of detergent monomers on migration in micellar electrokinetic chromatography.
    Téllez A; Weiss VU; Kenndler E
    Electrophoresis; 2008 Sep; 29(18):3916-23. PubMed ID: 18850660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discontinuous electrokinetic chromatography of parabens using different substituted resonances as pseudostationary phases.
    Bazzanella A; Bächmann K; Milbradt R; Böhmer V; Vogt W
    Electrophoresis; 1999 Jan; 20(1):92-9. PubMed ID: 10065964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling, optimisation and control of selectivity in the separation of aromatic bases by electrokinetic chromatography using a neutral cyclodextrin as a pseudostationary phase.
    Zakaria P; Macka M; Haddad PR
    Electrophoresis; 2002 Jun; 23(12):1844-52. PubMed ID: 12116127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioseparation by MEKC using a ligand exchange-based chiral pseudostationary phase.
    Zaher M; Ravelet C; Vanhaverbeke C; Baussanne I; Perrier S; Fize J; Décout JL; Peyrin E
    Electrophoresis; 2009 Aug; 30(16):2869-73. PubMed ID: 19637217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling and optimization of the separation of anions in ion chromatography--capillary electrophoresis.
    Breadmore MC; Haddad PR; Fritz JS
    Electrophoresis; 2000 Sep; 21(15):3181-90. PubMed ID: 11001216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.