These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 12116392)

  • 1. Quantum chemical geometry optimizations in proteins using crystallographic raw data.
    Ryde U; Olsen L; Nilsson K
    J Comput Chem; 2002 Aug; 23(11):1058-70. PubMed ID: 12116392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum chemistry can locally improve protein crystal structures.
    Ryde U; Nilsson K
    J Am Chem Soc; 2003 Nov; 125(47):14232-3. PubMed ID: 14624544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate metal-site structures in proteins obtained by combining experimental data and quantum chemistry.
    Ryde U
    Dalton Trans; 2007 Feb; (6):607-25. PubMed ID: 17268593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refinement of NMR structures using implicit solvent and advanced sampling techniques.
    Chen J; Im W; Brooks CL
    J Am Chem Soc; 2004 Dec; 126(49):16038-47. PubMed ID: 15584737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protonation status of metal-bound ligands can be determined by quantum refinement.
    Nilsson K; Ryde U
    J Inorg Biochem; 2004 Sep; 98(9):1539-46. PubMed ID: 15337606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes.
    Schüttelkopf AW; van Aalten DM
    Acta Crystallogr D Biol Crystallogr; 2004 Aug; 60(Pt 8):1355-63. PubMed ID: 15272157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refinement of protein crystal structures using energy restraints derived from linear-scaling quantum mechanics.
    Yu N; Yennawar HP; Merz KM
    Acta Crystallogr D Biol Crystallogr; 2005 Mar; 61(Pt 3):322-32. PubMed ID: 15735343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated ligand placement and refinement with a combined force field and shape potential.
    Wlodek S; Skillman AG; Nicholls A
    Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):741-9. PubMed ID: 16790930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Version 1.2 of the Crystallography and NMR system.
    Brunger AT
    Nat Protoc; 2007; 2(11):2728-33. PubMed ID: 18007608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic mechanism of cyclophilin as observed in molecular dynamics simulations: pathway prediction and reconciliation of X-ray crystallographic and NMR solution data.
    Trzesniak D; van Gunsteren WF
    Protein Sci; 2006 Nov; 15(11):2544-51. PubMed ID: 17075133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of X-ray and NMR structures: is there a systematic difference in residue contacts between X-ray- and NMR-resolved protein structures?
    Garbuzynskiy SO; Melnik BS; Lobanov MY; Finkelstein AV; Galzitskaya OV
    Proteins; 2005 Jul; 60(1):139-47. PubMed ID: 15856480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative stability of protein structures determined by X-ray crystallography or NMR spectroscopy: a molecular dynamics simulation study.
    Fan H; Mark AE
    Proteins; 2003 Oct; 53(1):111-20. PubMed ID: 12945054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast and accurate predictions of protein NMR chemical shifts from interatomic distances.
    Kohlhoff KJ; Robustelli P; Cavalli A; Salvatella X; Vendruscolo M
    J Am Chem Soc; 2009 Oct; 131(39):13894-5. PubMed ID: 19739624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent developments for crystallographic refinement of macromolecules.
    Brünger AT
    Methods Mol Biol; 1996; 56():245-66. PubMed ID: 8781249
    [No Abstract]   [Full Text] [Related]  

  • 15. CORCEMA refinement of the bound ligand conformation within the protein binding pocket in reversibly forming weak complexes using STD-NMR intensities.
    Jayalakshmi V; Rama Krishna N
    J Magn Reson; 2004 May; 168(1):36-45. PubMed ID: 15082247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and mechanistic basis of porphyrin metallation by ferrochelatase.
    Lecerof D; Fodje M; Hansson A; Hansson M; Al-Karadaghi S
    J Mol Biol; 2000 Mar; 297(1):221-32. PubMed ID: 10704318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-mediated interactions between DNA and PhoB DNA-binding/transactivation domain: NMR-restrained molecular dynamics in explicit water environment.
    Yamane T; Okamura H; Ikeguchi M; Nishimura Y; Kidera A
    Proteins; 2008 Jun; 71(4):1970-83. PubMed ID: 18186481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The VMD-XPLOR visualization package for NMR structure refinement.
    Schwieters CD; Clore GM
    J Magn Reson; 2001 Apr; 149(2):239-44. PubMed ID: 11318623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating protein structures determined by structural genomics consortia.
    Bhattacharya A; Tejero R; Montelione GT
    Proteins; 2007 Mar; 66(4):778-95. PubMed ID: 17186527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometry, energetics, and dynamics of hydrogen bonds in proteins: structural information derived from NMR scalar couplings.
    Gsponer J; Hopearuoho H; Cavalli A; Dobson CM; Vendruscolo M
    J Am Chem Soc; 2006 Nov; 128(47):15127-35. PubMed ID: 17117864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.