BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 12116429)

  • 1. Phylogenetic relationships among the phrynosomatid sand lizards inferred from mitochondrial DNA sequences generated by heterogeneous evolutionary processes.
    Wilgenbusch J; de Queiroz K
    Syst Biol; 2000 Sep; 49(3):592-612. PubMed ID: 12116429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenetic relationships and heterogeneous evolutionary processes among phrynosomatine sand lizards (Squamata, Iguanidae) revisited.
    Schulte JA; de Queiroz K
    Mol Phylogenet Evol; 2008 May; 47(2):700-16. PubMed ID: 18362078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic relationships among phrynosomatid lizards as inferred from mitochondrial ribosomal DNA sequences: substitutional bias and information content of transitions relative to transversions.
    Reeder TW
    Mol Phylogenet Evol; 1995 Jun; 4(2):203-22. PubMed ID: 7663765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic relationships of phrynosomatid lizards based on nuclear and mitochondrial data, and a revised phylogeny for Sceloporus.
    Wiens JJ; Kuczynski CA; Arif S; Reeder TW
    Mol Phylogenet Evol; 2010 Jan; 54(1):150-61. PubMed ID: 19751839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic relationships and biogeography of xantusiid lizards, inferred from mitochondrial DNA sequences.
    Hedges SB; Bezy RL; Maxson LR
    Mol Biol Evol; 1991 Nov; 8(6):767-80. PubMed ID: 1775064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetic relationships of horned lizards (Phrynosoma) based on nuclear and mitochondrial data: evidence for a misleading mitochondrial gene tree.
    Leaché AD; McGuire JA
    Mol Phylogenet Evol; 2006 Jun; 39(3):628-44. PubMed ID: 16488160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data partitions and complex models in Bayesian analysis: the phylogeny of Gymnophthalmid lizards.
    Castoe TA; Doan TM; Parkinson CL
    Syst Biol; 2004 Jun; 53(3):448-69. PubMed ID: 15503673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary relationships among Japanese pond frogs inferred from mitochondrial DNA sequences of cytochrome b and 12S ribosomal RNA genes.
    Sumida M; Ogata M; Kaneda H; Yonekawa H
    Genes Genet Syst; 1998 Apr; 73(2):121-33. PubMed ID: 9718677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular phylogenetic relationships of pond frogs distributed in the Palearctic region inferred from DNA sequences of mitochondrial 12S ribosomal RNA and cytochrome b genes.
    Sumida M; Ogata M; Nishioka M
    Mol Phylogenet Evol; 2000 Aug; 16(2):278-85. PubMed ID: 10942614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Coachella valley fringe-toed lizard (Uma inornata): genetic diversity and phylogenetic relationships of an endangered species.
    Trépanier TL; Murphy RW
    Mol Phylogenet Evol; 2001 Mar; 18(3):327-34. PubMed ID: 11277627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward the phylogeny of the family Lacertidae: implications from mitochondrial DNA 12S and 16S gene sequences (Reptilia: Squamata).
    Fu J
    Mol Phylogenet Evol; 1998 Feb; 9(1):118-30. PubMed ID: 9479701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular phylogenetics, tRNA evolution, and historical biogeography in anguid lizards and related taxonomic families.
    Macey JR; Schulte JA; Larson A; Tuniyev BS; Orlov N; Papenfuss TJ
    Mol Phylogenet Evol; 1999 Aug; 12(3):250-72. PubMed ID: 10413621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular phylogeny and phylogeography of the Australian Diplodactylus stenodactylus (Gekkota; Reptilia) species-group based on mitochondrial and nuclear genes reveals an ancient split between Pilbara and non-Pilbara D. stenodactylus.
    Pepper M; Doughty P; Keogh JS
    Mol Phylogenet Evol; 2006 Dec; 41(3):539-55. PubMed ID: 16843684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogeny of xantusiid lizards: concern for data and analysis.
    Hedges SB; Bezy RL
    Mol Phylogenet Evol; 1993 Mar; 2(1):76-87. PubMed ID: 8081550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xantusiid "night" lizards: a puzzling phylogenetic problem revisited using likelihood-based Bayesian methods on mtDNA sequences.
    Vicario S; Caccone A; Gauthier J
    Mol Phylogenet Evol; 2003 Feb; 26(2):243-61. PubMed ID: 12565035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the phylogenetic signal limit from mitogenomes, slow evolving nuclear genes, and the concatenation approach. New insights into the Lacertini radiation using fast evolving nuclear genes and species trees.
    Mendes J; Harris DJ; Carranza S; Salvi D
    Mol Phylogenet Evol; 2016 Jul; 100():254-267. PubMed ID: 27095169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phylogenetic analysis of woodpeckers and their allies using 12S, Cyt b, and COI nucleotide sequences (class Aves; order Piciformes).
    Webb DM; Moore WS
    Mol Phylogenet Evol; 2005 Aug; 36(2):233-48. PubMed ID: 15869887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary history of Andean Pholidobolus and Macropholidus (Squamata: Gymnophthalmidae) lizards.
    Torres-Carvajal O; Mafla-Endara P
    Mol Phylogenet Evol; 2013 Aug; 68(2):212-7. PubMed ID: 23567020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vicariant patterns of fragmentation among gekkonid lizards of the genus Teratoscincus produced by the Indian collision: A molecular phylogenetic perspective and an area cladogram for Central Asia.
    Macey JR; Wang Y; Ananjeva NB; Larson A; Papenfuss TJ
    Mol Phylogenet Evol; 1999 Aug; 12(3):320-32. PubMed ID: 10413626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogeographical and speciation patterns in subterranean worm lizards of the genus Blanus (Amphisbaenia: Blanidae).
    Albert EM; Zardoya R; García-París M
    Mol Ecol; 2007 Apr; 16(7):1519-31. PubMed ID: 17391273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.