These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 12116595)

  • 1. Exploring among-site rate variation models in a maximum likelihood framework using empirical data: effects of model assumptions on estimates of topology, branch lengths, and bootstrap support.
    Buckley TR; Simon C; Chambers GK
    Syst Biol; 2001 Feb; 50(1):67-86. PubMed ID: 12116595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of nucleotide substitution model assumptions on estimates of nonparametric bootstrap support.
    Buckley TR; Cunningham CW
    Mol Biol Evol; 2002 Apr; 19(4):394-405. PubMed ID: 11919280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined data, Bayesian phylogenetics, and the origin of the New Zealand cicada genera.
    Buckley TR; Arensburger P; Simon C; Chambers GK
    Syst Biol; 2002 Feb; 51(1):4-18. PubMed ID: 11943089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative efficiencies of the maximum-likelihood, neighbor-joining, and maximum-parsimony methods when substitution rate varies with site.
    Tateno Y; Takezaki N; Nei M
    Mol Biol Evol; 1994 Mar; 11(2):261-77. PubMed ID: 8170367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian and maximum likelihood phylogenetic analyses of protein sequence data under relative branch-length differences and model violation.
    Mar JC; Harlow TJ; Ragan MA
    BMC Evol Biol; 2005 Jan; 5():8. PubMed ID: 15676079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetic analysis using parsimony and likelihood methods.
    Yang Z
    J Mol Evol; 1996 Feb; 42(2):294-307. PubMed ID: 8919881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The devil in the details: interactions between the branch-length prior and likelihood model affect node support and branch lengths in the phylogeny of the Psoraceae.
    Ekman S; Blaalid R
    Syst Biol; 2011 Jul; 60(4):541-61. PubMed ID: 21436107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composite likelihood modeling of neighboring site correlations of DNA sequence substitution rates.
    Deng L; Moore DF
    Stat Appl Genet Mol Biol; 2009; 8():Article 6. PubMed ID: 19222389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation.
    Yang Z; Goldman N; Friday A
    Mol Biol Evol; 1994 Mar; 11(2):316-24. PubMed ID: 8170371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Larger, unfiltered datasets are more effective at resolving phylogenetic conflict: Introns, exons, and UCEs resolve ambiguities in Golden-backed frogs (Anura: Ranidae; genus Hylarana).
    Chan KO; Hutter CR; Wood PL; Grismer LL; Brown RM
    Mol Phylogenet Evol; 2020 Oct; 151():106899. PubMed ID: 32590046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating hypotheses on the origin and evolution of the New Zealand alpine cicadas (Maoricicada) using multiple-comparison tests of tree topology.
    Buckley TR; Simon C; Shimodaira H; Chambers GK
    Mol Biol Evol; 2001 Feb; 18(2):223-34. PubMed ID: 11158381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in the pattern of nucleotide substitution across sites.
    Huelsenbeck JP; Nielsen R
    J Mol Evol; 1999 Jan; 48(1):86-93. PubMed ID: 9873080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of topology on estimates of among-site rate variation.
    Sullivan J; Holsinger KE; Simon C
    J Mol Evol; 1996 Feb; 42(2):308-12. PubMed ID: 8919882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of modelling rate heterogeneity among sites on phylogenetic estimates of intraspecific evolutionary rates and timescales.
    Jia F; Lo N; Ho SY
    PLoS One; 2014; 9(5):e95722. PubMed ID: 24798481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of substitution model adequacy using frequentist and Bayesian methods.
    Ripplinger J; Sullivan J
    Mol Biol Evol; 2010 Dec; 27(12):2790-803. PubMed ID: 20616145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying site-specific substitution rates.
    Meyer S; von Haeseler A
    Mol Biol Evol; 2003 Feb; 20(2):182-9. PubMed ID: 12598684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of rates-across-sites distributions in phylogenetic substitution models.
    Susko E; Field C; Blouin C; Roger AJ
    Syst Biol; 2003 Oct; 52(5):594-603. PubMed ID: 14530128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide substitution rates for the full set of mitochondrial protein-coding genes in Coleoptera.
    Pons J; Ribera I; Bertranpetit J; Balke M
    Mol Phylogenet Evol; 2010 Aug; 56(2):796-807. PubMed ID: 20152911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogeography of the New Zealand cicada Maoricicada campbelli based on mitochondrial DNA sequences: ancient clades associated with cenozoic environmental change.
    Buckley TR; Simon C; Chambers GK
    Evolution; 2001 Jul; 55(7):1395-407. PubMed ID: 11525463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inflation of Molecular Clock Rates and Dates: Molecular Phylogenetics, Biogeography, and Diversification of a Global Cicada Radiation from Australasia (Hemiptera: Cicadidae: Cicadettini).
    Marshall DC; Hill KB; Moulds M; Vanderpool D; Cooley JR; Mohagan AB; Simon C
    Syst Biol; 2016 Jan; 65(1):16-34. PubMed ID: 26493828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.