These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 12116596)
1. Stochastic search strategy for estimation of maximum likelihood phylogenetic trees. Salter LA; Pearl DK Syst Biol; 2001 Feb; 50(1):7-17. PubMed ID: 12116596 [TBL] [Abstract][Full Text] [Related]
2. Increasing the efficiency of searches for the maximum likelihood tree in a phylogenetic analysis of up to 150 nucleotide sequences. Morrison DA Syst Biol; 2007 Dec; 56(6):988-1010. PubMed ID: 18066931 [TBL] [Abstract][Full Text] [Related]
3. Very fast algorithms for evaluating the stability of ML and Bayesian phylogenetic trees from sequence data. Waddell PJ; Kishino H; Ota R Genome Inform; 2002; 13():82-92. PubMed ID: 14571377 [TBL] [Abstract][Full Text] [Related]
4. Representation in stochastic search for phylogenetic tree reconstruction. Weber G; Ohno-Machado L; Shieber S J Biomed Inform; 2006 Feb; 39(1):43-50. PubMed ID: 16359929 [TBL] [Abstract][Full Text] [Related]
5. A rapid heuristic algorithm for finding minimum evolution trees. Rodin A; Li WH Mol Phylogenet Evol; 2000 Aug; 16(2):173-9. PubMed ID: 10942605 [TBL] [Abstract][Full Text] [Related]
6. morePhyML: improving the phylogenetic tree space exploration with PhyML 3. Criscuolo A Mol Phylogenet Evol; 2011 Dec; 61(3):944-8. PubMed ID: 21925283 [TBL] [Abstract][Full Text] [Related]
7. Sampling phylogenetic tree space with the generalized Gibbs sampler. Keith JM; Adams P; Ragan MA; Bryant D Mol Phylogenet Evol; 2005 Mar; 34(3):459-68. PubMed ID: 15683921 [TBL] [Abstract][Full Text] [Related]
8. Phylogenetic tree construction using sequential stochastic approximation Monte Carlo. Cheon S; Liang F Biosystems; 2008 Jan; 91(1):94-107. PubMed ID: 17889993 [TBL] [Abstract][Full Text] [Related]
9. Evaluating intraspecific "network" construction methods using simulated sequence data: do existing algorithms outperform the global maximum parsimony approach? Cassens I; Mardulyn P; Milinkovitch MC Syst Biol; 2005 Jun; 54(3):363-72. PubMed ID: 16012104 [TBL] [Abstract][Full Text] [Related]
10. New approaches to phylogenetic tree search and their application to large numbers of protein alignments. Whelan S Syst Biol; 2007 Oct; 56(5):727-40. PubMed ID: 17849327 [TBL] [Abstract][Full Text] [Related]
11. On the quality of tree-based protein classification. Lazareva-Ulitsky B; Diemer K; Thomas PD Bioinformatics; 2005 May; 21(9):1876-90. PubMed ID: 15647305 [TBL] [Abstract][Full Text] [Related]
12. Efficient likelihood computations with nonreversible models of evolution. Boussau B; Gouy M Syst Biol; 2006 Oct; 55(5):756-68. PubMed ID: 17060197 [TBL] [Abstract][Full Text] [Related]
16. The prevalence of multifurcations in tree-space and their implications for tree-search. Whelan S; Money D Mol Biol Evol; 2010 Dec; 27(12):2674-7. PubMed ID: 20584772 [TBL] [Abstract][Full Text] [Related]
18. Failed refutations: further comments on parsimony and likelihood methods and their relationship to Popper's degree of corroboration. de Queiroz K; Poe S Syst Biol; 2003 Jun; 52(3):352-67. PubMed ID: 12775524 [TBL] [Abstract][Full Text] [Related]
20. Comparison of Boolean analysis and standard phylogenetic methods using artificially evolved and natural mt-tRNA sequences from great apes. Ari E; Ittzés P; Podani J; Thi QC; Jakó E Mol Phylogenet Evol; 2012 Apr; 63(1):193-202. PubMed ID: 22289866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]