These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12117468)

  • 1. Chloride influence on the incorporation of Cr(2)O(3) and NiO in clinker: a laboratory evaluation.
    Barros AM; Tenório JA; Espinosa DC
    J Hazard Mater; 2002 Jul; 93(2):221-32. PubMed ID: 12117468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of Cu and Ni incorporation ratios in Portland cement clinker.
    Ract PG; Espinosa DC; Tenório JA
    Waste Manag; 2003; 23(3):281-5. PubMed ID: 12737970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the incorporation ratio of ZnO, PbO and CdO into cement clinker.
    Barros AM; Tenório JA; Espinosa DC
    J Hazard Mater; 2004 Aug; 112(1-2):71-8. PubMed ID: 15225932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization/solidification on chromium (III) wastes by C(3)A and C(3)A hydrated matrix.
    Li X; He C; Bai Y; Ma B; Wang G; Tan H
    J Hazard Mater; 2014 Mar; 268():61-7. PubMed ID: 24468527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Waste with chrome in the Portland cement clinker production.
    Trezza MA; Scian AN
    J Hazard Mater; 2007 Aug; 147(1-2):188-96. PubMed ID: 17292542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of nickel-laden sludge by a high-temperature NiCr2O4 synthesis process.
    Li NH; Chen YH; Hu CY; Hsieh CH; Lo SL
    J Hazard Mater; 2011 Dec; 198():356-61. PubMed ID: 22079188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium behavior during cement-production processes: a clinkerization, hydration, and leaching study.
    Sinyoung S; Songsiriritthigul P; Asavapisit S; Kajitvichyanukul P
    J Hazard Mater; 2011 Jul; 191(1-3):296-305. PubMed ID: 21592657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential use of pyrite cinders as raw material in cement production: results of industrial scale trial operations.
    Alp I; Deveci H; Yazici EY; Türk T; Süngün YH
    J Hazard Mater; 2009 Jul; 166(1):144-9. PubMed ID: 19100685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of heavy metals on the polymorphs of dicalcium silicate in the belite-rich clinkers produced from electroplating sludge.
    Chen YL; Shih PH; Chiang LC; Chang YK; Lu HC; Chang JE
    J Hazard Mater; 2009 Oct; 170(1):443-8. PubMed ID: 19464111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lead, mercury, cadmium, chromium, nickel, copper, zinc, calcium, iron, manganese and chromium (VI) levels in Nigeria and United States of America cement dust.
    Ogunbileje JO; Sadagoparamanujam VM; Anetor JI; Farombi EO; Akinosun OM; Okorodudu AO
    Chemosphere; 2013 Mar; 90(11):2743-9. PubMed ID: 23261125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical corrosion and surface analyses of a ni-cr alloy in bleaching agents.
    Tamam E; Aydın AK; Bilgiç S
    J Prosthodont; 2014 Oct; 23(7):549-58. PubMed ID: 24750374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red mud addition in the raw meal for the production of Portland cement clinker.
    Tsakiridis PE; Agatzini-Leonardou S; Oustadakis P
    J Hazard Mater; 2004 Dec; 116(1-2):103-10. PubMed ID: 15561368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of clinkerization temperature by using phosphogypsum.
    Kacimi L; Simon-Masseron A; Ghomari A; Derriche Z
    J Hazard Mater; 2006 Sep; 137(1):129-37. PubMed ID: 16533556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitrified medical wastes bottom ash in cement clinkerization. Microstructural, hydration and leaching characteristics.
    Papamarkou S; Christopoulos D; Tsakiridis PE; Bartzas G; Tsakalakis K
    Sci Total Environ; 2018 Sep; 635():705-715. PubMed ID: 29680761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oil-based mud cutting as an additional raw material in clinker production.
    Al Dhamri HS; Abdul-Wahab SA; Velis C; Black L
    J Hazard Mater; 2020 Feb; 384():121022. PubMed ID: 31706749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of steel slag for Portland cement clinker production.
    Tsakiridis PE; Papadimitriou GD; Tsivilis S; Koroneos C
    J Hazard Mater; 2008 Apr; 152(2):805-11. PubMed ID: 17869414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of flotation wastes of copper slag as raw material in cement production.
    Alp I; Deveci H; Süngün H
    J Hazard Mater; 2008 Nov; 159(2-3):390-5. PubMed ID: 18384950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the evolution and transformation of chlorine during co-processing of hazardous waste incineration residue in a cement kiln.
    Zhu H; Wang Y; Jing N; Jiang X; Lv G; Yan J
    Waste Manag Res; 2019 May; 37(5):495-501. PubMed ID: 30795720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recycling MSWI bottom and fly ash as raw materials for Portland cement.
    Pan JR; Huang C; Kuo JJ; Lin SH
    Waste Manag; 2008; 28(7):1113-8. PubMed ID: 17627805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement Part 1: Processing and characterization of MSWI fly ash.
    Aubert JE; Husson B; Sarramone N
    J Hazard Mater; 2006 Aug; 136(3):624-31. PubMed ID: 16442718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.