These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The effect of day of emergence from the insect cadaver on the behavior and environmental tolerances of infective juveniles of the entomopathogenic nematode Heterorhabditis megidis (strain UK211). O'Leary SA; Stack CM; Chubb MA; Burnell AM J Parasitol; 1998 Aug; 84(4):665-72. PubMed ID: 9714191 [TBL] [Abstract][Full Text] [Related]
3. Effects of Paenibacillus nematophilus on the entomopathogenic nematode Heterorhabditis megidis. Enright MR; Griffin CT J Invertebr Pathol; 2005 Jan; 88(1):40-8. PubMed ID: 15707868 [TBL] [Abstract][Full Text] [Related]
4. The effect of initial dose on the recovery and final yields of Heterorhabditis megidis (Rhabditida: Heterorhabditidae) in larvae of the great wax moth, Galleria mellonella. Tumialis D; Pezowicz E; Mazurkiewicz A; Skrzecz I; Popowska-Nowak E; Petrykowska A Acta Parasitol; 2014 Jun; 59(2):213-8. PubMed ID: 24827089 [TBL] [Abstract][Full Text] [Related]
5. Phased infectivity in Heterorhabditis megidis: the effects of infection density in the parental host and filial generation. Ryder JJ; Griffin CT Int J Parasitol; 2003 Sep; 33(10):1013-8. PubMed ID: 13129522 [TBL] [Abstract][Full Text] [Related]
6. Storage temperature and duration affect Steinernema scarabaei dispersal and attraction, virulence, and infectivity to a white grub host. Koppenhöfer AM; Ebssa L; Fuzy EM J Invertebr Pathol; 2013 Feb; 112(2):129-37. PubMed ID: 23201455 [TBL] [Abstract][Full Text] [Related]
7. Infective juveniles of entomopathogenic nematodes (Steinernema and Heterorhabditis) secrete ascarosides and respond to interspecific dispersal signals. Hartley CJ; Lillis PE; Owens RA; Griffin CT J Invertebr Pathol; 2019 Nov; 168():107257. PubMed ID: 31634473 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of different sponge types on the survival and infectivity of stored entomopathogenic nematodes. Touray M; Gulcu B; Ulug D; Gulsen SH; Cimen H; Kaya HK; Cakmak I; Hazir S J Invertebr Pathol; 2020 Mar; 171():107332. PubMed ID: 32027881 [TBL] [Abstract][Full Text] [Related]
9. Desiccation survival of populations of the entomopathogenic nematodes Steinernema feltiae and Heterorhabditis megidis from Greece and the UK. Menti H; Wright DJ; Perry RN J Helminthol; 1997 Mar; 71(1):41-6. PubMed ID: 9166440 [TBL] [Abstract][Full Text] [Related]
10. Lateral Dispersal and Foraging Behavior of Entomopathogenic Nematodes in the Absence and Presence of Mobile and Non-Mobile Hosts. Bal HK; Grewal PS PLoS One; 2015; 10(6):e0129887. PubMed ID: 26079715 [TBL] [Abstract][Full Text] [Related]
11. Impact of the host cadaver on survival and infectivity of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under desiccating conditions. Perez EE; Lewis EE; Shapiro-Ilan DI J Invertebr Pathol; 2003 Feb; 82(2):111-8. PubMed ID: 12623311 [TBL] [Abstract][Full Text] [Related]
12. Density-dependent effects on Steinernema glaseri (Nematoda: Steinernematidae) within an insect host. Koppenhöfer AM; Kaya HK J Parasitol; 1995 Oct; 81(5):797-9. PubMed ID: 7472882 [TBL] [Abstract][Full Text] [Related]
13. Effects of storage temperature on survival and infectivity of three indigenous entomopathogenic nematodes strains (Steinernematidae and Heterorhabditidae) from Meghalaya, India. Lalramliana ; Yadav AK J Parasit Dis; 2016 Dec; 40(4):1150-1154. PubMed ID: 27876904 [TBL] [Abstract][Full Text] [Related]
14. Ambush foraging entomopathogenic nematodes employ 'sprinters' for long-distance dispersal in the absence of hosts. Bal HK; Taylor RA; Grewal PS J Parasitol; 2014 Aug; 100(4):422-32. PubMed ID: 24650130 [TBL] [Abstract][Full Text] [Related]
15. Infected host macerate enhances entomopathogenic nematode movement towards hosts and infectivity in a soil profile. Wu S; Kaplan F; Lewis E; Alborn HT; Shapiro-Ilan DI J Invertebr Pathol; 2018 Nov; 159():141-144. PubMed ID: 30336144 [TBL] [Abstract][Full Text] [Related]
16. Effect of the change in energy reserves on the entomopathogenic nematode efficacy. El-Assal FM; El-Lakwah SF; Hasheesh WS; El-Mahdi M J Egypt Soc Parasitol; 2008 Dec; 38(3):929-44. PubMed ID: 19209775 [TBL] [Abstract][Full Text] [Related]
17. Ecological characterisation of the Colombian entomopathogenic nematode Heterorhabditis sp. SL0708. Mejia-Torres MC; Sáenz A Braz J Biol; 2013 May; 73(2):239-43. PubMed ID: 23917550 [TBL] [Abstract][Full Text] [Related]
18. Glycogen: its importance in the infectivity of aged juveniles of Steinernema carpocapsae. Patel MN; Wright DJ Parasitology; 1997 Jun; 114 ( Pt 6)():591-6. PubMed ID: 9172428 [TBL] [Abstract][Full Text] [Related]
19. Highly Potent Extracts from Pea (Pisum sativum) and Maize (Zea mays) Roots Can Be Used to Induce Quiescence in Entomopathogenic Nematodes. Jaffuel G; Hiltpold I; Turlings TC J Chem Ecol; 2015 Sep; 41(9):793-800. PubMed ID: 26364294 [TBL] [Abstract][Full Text] [Related]
20. Vibrations as a novel signal for host location by parasitic nematodes. Torr P; Heritage S; Wilson MJ Int J Parasitol; 2004 Aug; 34(9):997-9. PubMed ID: 15313127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]