BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 12119021)

  • 1. Identification of a peroxide-sensitive redox switch at the CXXC motif in the human mitochondrial branched chain aminotransferase.
    Conway ME; Yennawar N; Wallin R; Poole LB; Hutson SM
    Biochemistry; 2002 Jul; 41(29):9070-8. PubMed ID: 12119021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human mitochondrial branched chain aminotransferase: structural basis for substrate specificity and role of redox active cysteines.
    Conway ME; Yennawar N; Wallin R; Poole LB; Hutson SM
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):61-5. PubMed ID: 12686109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles for cysteine residues in the regulatory CXXC motif of human mitochondrial branched chain aminotransferase enzyme.
    Conway ME; Poole LB; Hutson SM
    Biochemistry; 2004 Jun; 43(23):7356-64. PubMed ID: 15182179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural determinants for branched-chain aminotransferase isozyme-specific inhibition by the anticonvulsant drug gabapentin.
    Goto M; Miyahara I; Hirotsu K; Conway M; Yennawar N; Islam MM; Hutson SM
    J Biol Chem; 2005 Nov; 280(44):37246-56. PubMed ID: 16141215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of human mitochondrial branched chain aminotransferase reaction intermediates: ketimine and pyridoxamine phosphate forms.
    Yennawar NH; Conway ME; Yennawar HP; Farber GK; Hutson SM
    Biochemistry; 2002 Oct; 41(39):11592-601. PubMed ID: 12269802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of an oxidized mutant of human mitochondrial branched-chain aminotransferase.
    Herbert D; Gibbs S; Riddick A; Conway M; Dong M
    Acta Crystallogr F Struct Biol Commun; 2020 Jan; 76(Pt 1):14-19. PubMed ID: 31929181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox regulation and trapping sulfenic acid in the peroxide-sensitive human mitochondrial branched chain aminotransferase.
    Hutson SM; Poole LB; Coles S; Conway ME
    Methods Mol Biol; 2008; 476():139-52. PubMed ID: 19157014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human mitochondrial branched chain aminotransferase isozyme: structural role of the CXXC center in catalysis.
    Yennawar NH; Islam MM; Conway M; Wallin R; Hutson SM
    J Biol Chem; 2006 Dec; 281(51):39660-71. PubMed ID: 17050531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential redox potential between the human cytosolic and mitochondrial branched-chain aminotransferase.
    Coles SJ; Hancock JT; Conway ME
    Acta Biochim Biophys Sin (Shanghai); 2012 Feb; 44(2):172-6. PubMed ID: 22107788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins.
    Conway ME; Coles SJ; Islam MM; Hutson SM
    Biochemistry; 2008 May; 47(19):5465-79. PubMed ID: 18419134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S-Nitrosoglutathione inactivation of the mitochondrial and cytosolic BCAT proteins: S-nitrosation and S-thiolation.
    Coles SJ; Easton P; Sharrod H; Hutson SM; Hancock J; Patel VB; Conway ME
    Biochemistry; 2009 Jan; 48(3):645-56. PubMed ID: 19119849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of S-Nitrosation and S-Glutathionylation of the Human Branched-Chain Aminotransferase Proteins.
    Forshaw TE; Conway ME
    Methods Mol Biol; 2019; 1990():71-84. PubMed ID: 31148063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The branched-chain aminotransferase proteins: novel redox chaperones for protein disulfide isomerase--implications in Alzheimer's disease.
    El Hindy M; Hezwani M; Corry D; Hull J; El Amraoui F; Harris M; Lee C; Forshaw T; Wilson A; Mansbridge A; Hassler M; Patel VB; Kehoe PG; Love S; Conway ME
    Antioxid Redox Signal; 2014 Jun; 20(16):2497-513. PubMed ID: 24094038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel branched-chain amino acid metabolon. Protein-protein interactions in a supramolecular complex.
    Islam MM; Wallin R; Wynn RM; Conway M; Fujii H; Mobley JA; Chuang DT; Hutson SM
    J Biol Chem; 2007 Apr; 282(16):11893-903. PubMed ID: 17314104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression and characterization of the human mitochondrial and cytosolic branched-chain aminotransferases.
    Davoodi J; Drown PM; Bledsoe RK; Wallin R; Reinhart GD; Hutson SM
    J Biol Chem; 1998 Feb; 273(9):4982-9. PubMed ID: 9478945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of human mitochondrial branched-chain aminotransferase.
    Yennawar N; Dunbar J; Conway M; Hutson S; Farber G
    Acta Crystallogr D Biol Crystallogr; 2001 Apr; 57(Pt 4):506-15. PubMed ID: 11264579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identity and functions of CxxC-derived motifs.
    Fomenko DE; Gladyshev VN
    Biochemistry; 2003 Sep; 42(38):11214-25. PubMed ID: 14503871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The redox switch that regulates molecular chaperones.
    Conway ME; Lee C
    Biomol Concepts; 2015 Aug; 6(4):269-84. PubMed ID: 26352357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The CXXC motif: a rheostat in the active site.
    Chivers PT; Prehoda KE; Raines RT
    Biochemistry; 1997 Apr; 36(14):4061-6. PubMed ID: 9099998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A role for His-160 in peroxide inhibition of S. cerevisiae S-formylglutathione hydrolase: evidence for an oxidation sensitive motif.
    Legler PM; Leary DH; Hervey WJ; Millard CB
    Arch Biochem Biophys; 2012 Dec; 528(1):7-20. PubMed ID: 22906720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.