BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 12119399)

  • 1. Correlation of somatic hypermutation specificity and A-T base pair substitution errors by DNA polymerase eta during copying of a mouse immunoglobulin kappa light chain transgene.
    Pavlov YI; Rogozin IB; Galkin AP; Aksenova AY; Hanaoka F; Rada C; Kunkel TA
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9954-9. PubMed ID: 12119399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA repair in antibody somatic hypermutation.
    Casali P; Pal Z; Xu Z; Zan H
    Trends Immunol; 2006 Jul; 27(7):313-21. PubMed ID: 16737852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of error-prone polymerases in BL2 cells activated for Ig somatic hypermutation.
    Poltoratsky V; Woo CJ; Tippin B; Martin A; Goodman MF; Scharff MD
    Proc Natl Acad Sci U S A; 2001 Jul; 98(14):7976-81. PubMed ID: 11427727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA polymerase theta contributes to the generation of C/G mutations during somatic hypermutation of Ig genes.
    Masuda K; Ouchida R; Takeuchi A; Saito T; Koseki H; Kawamura K; Tagawa M; Tokuhisa T; Azuma T; O-Wang J
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13986-91. PubMed ID: 16172387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Somatic mutation patterns at Ig and Non-Ig Loci.
    Steele EJ; Franklin A; Lindley RA
    DNA Repair (Amst); 2024 Jan; 133():103607. PubMed ID: 38056368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different mutation signatures in DNA polymerase eta- and MSH6-deficient mice suggest separate roles in antibody diversification.
    Martomo SA; Yang WW; Wersto RP; Ohkumo T; Kondo Y; Yokoi M; Masutani C; Hanaoka F; Gearhart PJ
    Proc Natl Acad Sci U S A; 2005 Jun; 102(24):8656-61. PubMed ID: 15939880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hypermutable insert in an immunoglobulin transgene contains hotspots of somatic mutation and sequences predicting highly stable structures in the RNA transcript.
    Storb U; Klotz EL; Hackett J; Kage K; Bozek G; Martin TE
    J Exp Med; 1998 Aug; 188(4):689-98. PubMed ID: 9705951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large deletions in immunoglobulin genes are associated with a sustained absence of DNA Polymerase η.
    Lerner LK; Nguyen TV; Castro LP; Vilar JB; Munford V; Le Guillou M; Mohammad MM; Vergé V; Rosselli F; Menck CFM; Sarasin A; Aoufouchi S
    Sci Rep; 2020 Jan; 10(1):1311. PubMed ID: 31992747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lack of Evidence for a Substantial Rate of Templated Mutagenesis in B Cell Diversification.
    Fukuyama J; Olson BJ; Matsen FA
    J Immunol; 2020 Aug; 205(4):936-944. PubMed ID: 32669310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A proposed reverse transcription mechanism for (CAG)n and similar expandable repeats that cause neurological and other diseases.
    Franklin A; Steele EJ; Lindley RA
    Heliyon; 2020 Feb; 6(2):e03258. PubMed ID: 32140575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding Fc function for rational vaccine design against pathogens.
    Bowman KA; Kaplonek P; McNamara RP
    mBio; 2024 Jan; 15(1):e0303623. PubMed ID: 38112418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunoglobulin somatic hypermutation in a defined biochemical system recapitulates affinity maturation and permits antibody optimization.
    Jeong SL; Zhang H; Yamaki S; Yang C; McKemy DD; Lieber MR; Pham P; Goodman MF
    Nucleic Acids Res; 2022 Nov; 50(20):11738-11754. PubMed ID: 36321646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome Instability in Multiple Myeloma: Facts and Factors.
    Aksenova AY; Zhuk AS; Lada AG; Zotova IV; Stepchenkova EI; Kostroma II; Gritsaev SV; Pavlov YI
    Cancers (Basel); 2021 Nov; 13(23):. PubMed ID: 34885058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA Methylation, Deamination, and Translesion Synthesis Combine to Generate Footprint Mutations in Cancer Driver Genes in B-Cell Derived Lymphomas and Other Cancers.
    Rogozin IB; Roche-Lima A; Tyryshkin K; Carrasquillo-Carrión K; Lada AG; Poliakov LY; Schwartz E; Saura A; Yurchenko V; Cooper DN; Panchenko AR; Pavlov YI
    Front Genet; 2021; 12():671866. PubMed ID: 34093666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Avidity optimization of a MAGE-A1-specific TCR with somatic hypermutation.
    Bassan D; Gozlan YM; Sharbi-Yunger A; Tzehoval E; Greenstein E; Bitan L; Friedman N; Eisenbach L
    Eur J Immunol; 2021 Jun; 51(6):1505-1518. PubMed ID: 33835499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Camel Adaptive Immune Receptors Repertoire as a Singular Example of Structural and Functional Genomics.
    Ciccarese S; Burger PA; Ciani E; Castelli V; Linguiti G; Plasil M; Massari S; Horin P; Antonacci R
    Front Genet; 2019; 10():997. PubMed ID: 31681428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutating for Good: DNA Damage Responses During Somatic Hypermutation.
    Pilzecker B; Jacobs H
    Front Immunol; 2019; 10():438. PubMed ID: 30915081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse Transcriptase Mechanism of Somatic Hypermutation: 60 Years of Clonal Selection Theory.
    Steele EJ
    Front Immunol; 2017; 8():1611. PubMed ID: 29218047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA polymerase η mutational signatures are found in a variety of different types of cancer.
    Rogozin IB; Goncearenco A; Lada AG; De S; Yurchenko V; Nudelman G; Panchenko AR; Cooper DN; Pavlov YI
    Cell Cycle; 2018; 17(3):348-355. PubMed ID: 29139326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of amino acid replacement costs by mutational pressure in bacterial genomes.
    Błażej P; Mackiewicz D; Grabińska M; Wnętrzak M; Mackiewicz P
    Sci Rep; 2017 Apr; 7(1):1061. PubMed ID: 28432324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.