BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 12119406)

  • 1. Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer.
    Dzeja PP; Bortolon R; Perez-Terzic C; Holmuhamedov EL; Terzic A
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):10156-61. PubMed ID: 12119406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the control of energy metabolism in mammalian cardiac muscle cells in culture.
    Seraydarian MW
    Recent Adv Stud Cardiac Struct Metab; 1975; 8():181-90. PubMed ID: 1215636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenylate kinase-catalyzed phosphotransfer in the myocardium : increased contribution in heart failure.
    Dzeja PP; Vitkevicius KT; Redfield MM; Burnett JC; Terzic A
    Circ Res; 1999 May; 84(10):1137-43. PubMed ID: 10347088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isozymes of creatine kinase in mammalian cell cultures.
    Van Brussel E; Yang JJ; Seraydarian MW
    J Cell Physiol; 1983 Aug; 116(2):221-6. PubMed ID: 6863402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decline of Phosphotransfer and Substrate Supply Metabolic Circuits Hinders ATP Cycling in Aging Myocardium.
    Nemutlu E; Gupta A; Zhang S; Viqar M; Holmuhamedov E; Terzic A; Jahangir A; Dzeja P
    PLoS One; 2015; 10(9):e0136556. PubMed ID: 26378442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heart metabolic disturbances in cardiovascular diseases.
    Carvajal K; Moreno-Sánchez R
    Arch Med Res; 2003; 34(2):89-99. PubMed ID: 12700003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenylate kinase: kinetic behavior in intact cells indicates it is integral to multiple cellular processes.
    Dzeja PP; Zeleznikar RJ; Goldberg ND
    Mol Cell Biochem; 1998 Jul; 184(1-2):169-82. PubMed ID: 9746320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels.
    Carrasco AJ; Dzeja PP; Alekseev AE; Pucar D; Zingman LV; Abraham MR; Hodgson D; Bienengraeber M; Puceat M; Janssen E; Wieringa B; Terzic A
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7623-8. PubMed ID: 11390963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenylate kinase-catalyzed phosphoryl transfer couples ATP utilization with its generation by glycolysis in intact muscle.
    Zeleznikar RJ; Dzeja PP; Goldberg ND
    J Biol Chem; 1995 Mar; 270(13):7311-9. PubMed ID: 7706272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of adenylate kinase activity on the rate and efficiency of energy transport from mitochondria to hexokinase.
    Dzeja P; Kalvenas A; Toleikis A; Praskevicius A
    Biochem Int; 1985 Feb; 10(2):259-65. PubMed ID: 2986636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of energy transport mechanism in myocardial cells.
    Saks VA; Chernousova GB; Voronkov II; Smirnov VN; Chazov EI
    Circ Res; 1974 Sep; 35 Suppl 3():138-49. PubMed ID: 4415965
    [No Abstract]   [Full Text] [Related]  

  • 12. Energetic state is a strong regulator of sarcoplasmic reticulum Ca2+ loss in cardiac muscle: different efficiencies of different energy sources.
    Kuum M; Kaasik A; Joubert F; Ventura-Clapier R; Veksler V
    Cardiovasc Res; 2009 Jul; 83(1):89-96. PubMed ID: 19389722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling of cell energetics with membrane metabolic sensing. Integrative signaling through creatine kinase phosphotransfer disrupted by M-CK gene knock-out.
    Abraham MR; Selivanov VA; Hodgson DM; Pucar D; Zingman LV; Wieringa B; Dzeja PP; Alekseev AE; Terzic A
    J Biol Chem; 2002 Jul; 277(27):24427-34. PubMed ID: 11967264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenylate kinase I does not affect cellular growth characteristics under normal and metabolic stress conditions.
    de Bruin W; Oerlemans F; Wieringa B
    Exp Cell Res; 2004 Jul; 297(1):97-107. PubMed ID: 15194428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular energetics in the preconditioned state: protective role for phosphotransfer reactions captured by 18O-assisted 31P NMR.
    Pucar D; Dzeja PP; Bast P; Juranic N; Macura S; Terzic A
    J Biol Chem; 2001 Nov; 276(48):44812-9. PubMed ID: 11583991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphotransfer dynamics in skeletal muscle from creatine kinase gene-deleted mice.
    Dzeja PP; Terzic A; Wieringa B
    Mol Cell Biochem; 2004; 256-257(1-2):13-27. PubMed ID: 14977167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired intracellular energetic communication in muscles from creatine kinase and adenylate kinase (M-CK/AK1) double knock-out mice.
    Janssen E; Terzic A; Wieringa B; Dzeja PP
    J Biol Chem; 2003 Aug; 278(33):30441-9. PubMed ID: 12730234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compromised energetics in the adenylate kinase AK1 gene knockout heart under metabolic stress.
    Pucar D; Janssen E; Dzeja PP; Juranic N; Macura S; Wieringa B; Terzic A
    J Biol Chem; 2000 Dec; 275(52):41424-9. PubMed ID: 11006295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of mitochondrial gene expression by energy demand in neural cells.
    Mehrabian Z; Liu LI; Fiskum G; Rapoport SI; Chandrasekaran K
    J Neurochem; 2005 May; 93(4):850-60. PubMed ID: 15857388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. c-Jun N-terminal kinase regulates mitochondrial bioenergetics by modulating pyruvate dehydrogenase activity in primary cortical neurons.
    Zhou Q; Lam PY; Han D; Cadenas E
    J Neurochem; 2008 Jan; 104(2):325-35. PubMed ID: 17949412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.