These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 12120157)
1. The catalytic activity of alumina supported Ru nanoparticles for NO/CH4 reaction. Balint I; Miyazaki A; Aika K Chem Commun (Camb); 2002 Mar; (6):630-1. PubMed ID: 12120157 [TBL] [Abstract][Full Text] [Related]
2. Origin of the Excellent Performance of Ru on Nitrogen-Doped Carbon Nanofibers for CO Roldán L; Marco Y; García-Bordejé E ChemSusChem; 2017 Mar; 10(6):1139-1144. PubMed ID: 27921378 [TBL] [Abstract][Full Text] [Related]
3. Influence of the presence of ruthenium on the activity and stability of Co-Mg-Al-based catalysts in CO Gennequin C; Hany S; Tidahy HL; Aouad S; Estephane J; Aboukaïs A; Abi-Aad E Environ Sci Pollut Res Int; 2016 Nov; 23(22):22744-22760. PubMed ID: 27562810 [TBL] [Abstract][Full Text] [Related]
4. Ultrasound-assisted polyol method for the preparation of SBA-15-supported ruthenium nanoparticles and the study of their catalytic activity on the partial oxidation of methane. Li H; Wang R; Hong Q; Chen L; Zhong Z; Koltypin Y; Calderon-Moreno J; Gedanken A Langmuir; 2004 Sep; 20(19):8352-6. PubMed ID: 15350113 [TBL] [Abstract][Full Text] [Related]
5. Catalytic Functionalities of Nano Ruthenium/gamma-Al2O3 Catalysts for the Vapour Phase Hydrogenolysis of Glycerol. Kumar VP; Priya SS; Harikrishna Y; Kumar A; Chary KV J Nanosci Nanotechnol; 2016 Feb; 16(2):1952-60. PubMed ID: 27433708 [TBL] [Abstract][Full Text] [Related]
6. Improved Performance of Ru/γ-Al2O3 Catalysts in the Selective Methanation of CO in CO2-Rich Reformate Gases upon Transient Exposure to Water-Containing Reaction Gas. Abdel-Mageed AM; Widmann D; Eckle S; Behm RJ ChemSusChem; 2015 Nov; 8(22):3869-81. PubMed ID: 26457475 [TBL] [Abstract][Full Text] [Related]
7. Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries. Jung HG; Jeong YS; Park JB; Sun YK; Scrosati B; Lee YJ ACS Nano; 2013 Apr; 7(4):3532-9. PubMed ID: 23540570 [TBL] [Abstract][Full Text] [Related]
8. Reversible N-N coupling of NO ligands on dinuclear ruthenium complexes and subsequent N2O evolution: relevance to nitric oxide reductase. Arikawa Y; Asayama T; Moriguchi Y; Agari S; Onishi M J Am Chem Soc; 2007 Nov; 129(46):14160-1. PubMed ID: 17973393 [No Abstract] [Full Text] [Related]
9. Nitric oxide adsorption and desorption on alumina supported palladium. Wang CB; Yeh TF; Lin HK J Hazard Mater; 2002 Jun; 92(3):241-51. PubMed ID: 12031609 [TBL] [Abstract][Full Text] [Related]
10. Experimental and modeling study of the effect of CH(4) and pulverized coal on selective non-catalytic reduction process. Zhang Y; Cai N; Yang J; Xu B Chemosphere; 2008 Oct; 73(5):650-6. PubMed ID: 18727998 [TBL] [Abstract][Full Text] [Related]
11. Catalytic wet oxidation of aqueous methylamine: comparative study on the catalytic performance of platinum-ruthenium, platinum, and ruthenium catalysts supported on titania. Song A; Lu G Environ Technol; 2015; 36(9-12):1160-6. PubMed ID: 25358013 [TBL] [Abstract][Full Text] [Related]
12. Morphology-Dependent Catalytic Activity of Ru/CeO₂ in Dry Reforming of Methane. He L; Ren Y; Fu Y; Yue B; Tsang SCE; He H Molecules; 2019 Feb; 24(3):. PubMed ID: 30717097 [TBL] [Abstract][Full Text] [Related]
13. Methane-induced Activation Mechanism of Fused Ferric Oxide-Alumina Catalysts during Methane Decomposition. Reddy Enakonda L; Zhou L; Saih Y; Ould-Chikh S; Lopatin S; Gary D; Del-Gallo P; Basset JM ChemSusChem; 2016 Aug; 9(15):1911-5. PubMed ID: 27345621 [TBL] [Abstract][Full Text] [Related]
14. Catalytic activity of Ru/Al2O3 for ozonation of dimethyl phthalate in aqueous solution. Yunrui Z; Wanpeng Z; Fudong L; Jianbing W; Shaoxia Y Chemosphere; 2007 Jan; 66(1):145-50. PubMed ID: 16793113 [TBL] [Abstract][Full Text] [Related]
15. Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel. Kang J; Zhang S; Zhang Q; Wang Y Angew Chem Int Ed Engl; 2009; 48(14):2565-8. PubMed ID: 19248073 [TBL] [Abstract][Full Text] [Related]
16. New ruthenium nitrosyl complexes with tris(1-pyrazolyl)methane (tpm) and 2,2'-bipyridine (bpy) coligands. Structure, spectroscopy, and electrophilic and nucleophilic reactivities of bound nitrosyl. Videla M; Jacinto JS; Baggio R; Garland MT; Singh P; Kaim W; Slep LD; Olabe JA Inorg Chem; 2006 Oct; 45(21):8608-17. PubMed ID: 17029371 [TBL] [Abstract][Full Text] [Related]
17. Choice of precipitant and calcination temperature of precursor for synthesis of NiCo Trivedi S; Prasad R J Environ Sci (China); 2018 Mar; 65():62-71. PubMed ID: 29548412 [TBL] [Abstract][Full Text] [Related]
18. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface. Muratsugu S; Kityakarn S; Wang F; Ishiguro N; Kamachi T; Yoshizawa K; Sekizawa O; Uruga T; Tada M Phys Chem Chem Phys; 2015 Oct; 17(38):24791-802. PubMed ID: 26344789 [TBL] [Abstract][Full Text] [Related]
19. [Selective reduction of NO over indium catalysts prepared by different methods]. Cui XY; Hao JM; Fu LX; Li JH; Liu ZM Huan Jing Ke Xue; 2006 Feb; 27(2):214-8. PubMed ID: 16686177 [TBL] [Abstract][Full Text] [Related]
20. Promotion effects of SiO2 or/and Al2O3 doped CeO2/TiO2 catalysts for selective catalytic reduction of NO by NH3. Zhao W; Tang Y; Wan Y; Li L; Yao S; Li X; Gu J; Li Y; Shi J J Hazard Mater; 2014 Aug; 278():350-9. PubMed ID: 24996153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]