BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 12121002)

  • 1. Transcriptomics and proteomics: tools for the identification of novel drug targets and vaccine candidates for tuberculosis.
    Betts JC
    IUBMB Life; 2002; 53(4-5):239-42. PubMed ID: 12121002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of novel vaccine candidates and drug targets against visceral leishmaniasis using proteomics and transcriptomics.
    Kumari S; Kumar A; Samant M; Singh N; Dube A
    Curr Drug Targets; 2008 Nov; 9(11):938-47. PubMed ID: 18991606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining the mandate of tuberculosis research in a postgenomic era.
    Chakhaiyar P; Hasnain SE
    Med Princ Pract; 2004; 13(4):177-84. PubMed ID: 15181320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selecting the components for a safe and efficient tuberculosis subunit vaccine--recent progress and post-genomic insights.
    Okkels LM; Doherty TM; Andersen P
    Curr Pharm Biotechnol; 2003 Feb; 4(1):69-83. PubMed ID: 12570683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens.
    Jungblut PR; Schaible UE; Mollenkopf HJ; Zimny-Arndt U; Raupach B; Mattow J; Halada P; Lamer S; Hagens K; Kaufmann SH
    Mol Microbiol; 1999 Sep; 33(6):1103-17. PubMed ID: 10510226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a subtractive genomics approach for in silico identification and characterization of novel drug targets in Mycobacterium tuberculosis F11.
    Hosen MI; Tanmoy AM; Mahbuba DA; Salma U; Nazim M; Islam MT; Akhteruzzaman S
    Interdiscip Sci; 2014 Mar; 6(1):48-56. PubMed ID: 24464704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinformatics: use in bacterial vaccine discovery.
    Zagursky RJ; Russell D
    Biotechniques; 2001 Sep; 31(3):636, 638, 640, passim. PubMed ID: 11570507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of genomics and proteomics for identification of bacterial gene products as potential vaccine candidates.
    Chakravarti DN; Fiske MJ; Fletcher LD; Zagursky RJ
    Vaccine; 2000 Nov; 19(6):601-12. PubMed ID: 11090710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative mycobacterial genomics as a tool for drug target and antigen discovery.
    Cole ST
    Eur Respir J Suppl; 2002 Jul; 36():78s-86s. PubMed ID: 12168750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New drug targets for Mycobacterium tuberculosis.
    Chopra P; Meena LS; Singh Y
    Indian J Med Res; 2003 Jan; 117():1-9. PubMed ID: 12866819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based approaches to drug discovery against tuberculosis.
    Holton SJ; Weiss MS; Tucker PA; Wilmanns M
    Curr Protein Pept Sci; 2007 Aug; 8(4):365-75. PubMed ID: 17696869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteome-wide subtractive approach to prioritize a hypothetical protein of XDR-Mycobacterium tuberculosis as potential drug target.
    Uddin R; Siddiqui QN; Sufian M; Azam SS; Wadood A
    Genes Genomics; 2019 Nov; 41(11):1281-1292. PubMed ID: 31388979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring functional genomics for the development of novel intervention strategies against tuberculosis.
    Rachman H; Kaufmann SH
    Int J Med Microbiol; 2007 Nov; 297(7-8):559-67. PubMed ID: 17467338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From proteomics to systems biology of bacterial pathogens: approaches, tools, and applications.
    Plikat U; Voshol H; Dangendorf Y; Wiedmann B; Devay P; Müller D; Wirth U; Szustakowski J; Chirn GW; Inverardi B; Puyang X; Brown K; Kamp H; Hoving S; Ruchti A; Brendlen N; Peterson R; Buco J; Oostrum Jv; Peitsch MC
    Proteomics; 2007 Mar; 7(6):992-1003. PubMed ID: 17370256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards the proteome of Mycobacterium tuberculosis.
    Rosenkrands I; King A; Weldingh K; Moniatte M; Moertz E; Andersen P
    Electrophoresis; 2000 Nov; 21(17):3740-56. PubMed ID: 11271494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated transcriptome and proteome data: the challenges ahead.
    Hack CJ
    Brief Funct Genomic Proteomic; 2004 Nov; 3(3):212-9. PubMed ID: 15642185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Novel Potential Vaccine Candidates against Tuberculosis Based on Reverse Vaccinology.
    Monterrubio-López GP; González-Y-Merchand JA; Ribas-Aparicio RM
    Biomed Res Int; 2015; 2015():483150. PubMed ID: 25961021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic review on the proteomic profile of Mycobacterium tuberculosis exposed to drugs.
    Campanerut-Sá PAZ; Ghiraldi-Lopes LD; Meneguello JE; Teixeira JJV; Scodro RBL; Siqueira VLD; Svidzinski TIE; Pavan FR; Cardoso RF
    Proteomics Clin Appl; 2017 Dec; 11(11-12):. PubMed ID: 28627738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of potential druggable targets among hypothetical proteins of extensively drug resistant Mycobacterium tuberculosis (XDR KZN 605) through subtractive genomics approach.
    Uddin R; Siddiqui QN; Azam SS; Saima B; Wadood A
    Eur J Pharm Sci; 2018 Mar; 114():13-23. PubMed ID: 29174549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic profile of Mycobacterium tuberculosis after eupomatenoid-5 induction reveals potential drug targets.
    Ghiraldi-Lopes LD; Campanerut-Sá PA; Meneguello JE; Seixas FA; Lopes-Ortiz MA; Scodro RB; Pires CT; da Silva RZ; Siqueira VL; Nakamura CV; Cardoso RF
    Future Microbiol; 2017 Aug; 12():867-879. PubMed ID: 28686056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.