BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 12121116)

  • 1. Kinetics and mechanism of hydroxyl radical and OH-adduct radical reactions with nitroxides and with their hydroxylamines.
    Samuni A; Goldstein S; Russo A; Mitchell JB; Krishna MC; Neta P
    J Am Chem Soc; 2002 Jul; 124(29):8719-24. PubMed ID: 12121116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of the reaction between nitroxide and thiyl radicals: nitroxides as antioxidants in the presence of thiols.
    Goldstein S; Samuni A; Merenyi G
    J Phys Chem A; 2008 Sep; 112(37):8600-5. PubMed ID: 18729428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction of cyclic nitroxides with nitrogen dioxide: the intermediacy of the oxoammonium cations.
    Goldstein S; Samuni A; Russo A
    J Am Chem Soc; 2003 Jul; 125(27):8364-70. PubMed ID: 12837108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of cyclic nitroxide radicals as HNO scavengers.
    Samuni Y; Samuni U; Goldstein S
    J Inorg Biochem; 2013 Jan; 118():155-61. PubMed ID: 23122928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and mechanism of the comproportionation reaction between oxoammonium cation and hydroxylamine derived from cyclic nitroxides.
    Israeli A; Patt M; Oron M; Samuni A; Kohen R; Goldstein S
    Free Radic Biol Med; 2005 Feb; 38(3):317-24. PubMed ID: 15629861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and mechanism of peroxyl radical reactions with nitroxides.
    Goldstein S; Samuni A
    J Phys Chem A; 2007 Feb; 111(6):1066-72. PubMed ID: 17286360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactions of nitric oxide, peroxynitrite, and carbonate radicals with nitroxides and their corresponding oxoammonium cations.
    Goldstein S; Samuni A; Merenyi G
    Chem Res Toxicol; 2004 Feb; 17(2):250-7. PubMed ID: 14967013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unexpected rapid aerobic transformation of 2,2,6,6-tetraethyl-4-oxo(piperidin-1-yloxyl) radical by cytochrome P450 in the presence of NADPH: Evidence against a simple reduction of the nitroxide moiety to the hydroxylamine.
    Babić N; Orio M; Peyrot F
    Free Radic Biol Med; 2020 Aug; 156():144-156. PubMed ID: 32561320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of oxoammonium cation in the SOD-mimic activity of cyclic nitroxides.
    Goldstein S; Merenyi G; Russo A; Samuni A
    J Am Chem Soc; 2003 Jan; 125(3):789-95. PubMed ID: 12526680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of superoxide-induced exchange among nitroxide antioxidants and their oxidized and reduced forms.
    Zhang R; Goldstein S; Samuni A
    Free Radic Biol Med; 1999 May; 26(9-10):1245-52. PubMed ID: 10381196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of TEMPOL-hydroxylamine during reaction between TEMPOL and hydroxyl radical: HPLC/ECD study.
    Kudo W; Yamato M; Yamada K; Kinoshita Y; Shiba T; Watanabe T; Utsumi H
    Free Radic Res; 2008 May; 42(5):505-12. PubMed ID: 18484414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of oxidative damage by nitroxide free radicals.
    Dragutan I; Mehlhorn RJ
    Free Radic Res; 2007 Mar; 41(3):303-15. PubMed ID: 17364959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of paraquat and copper reactions with nitroxides: the effects of nitroxides on the aerobic and anoxic toxicity of paraquat.
    Goldstein S; Samuni A; Aronovitch Y; Godinger D; Russo A; Mitchell JB
    Chem Res Toxicol; 2002 May; 15(5):686-91. PubMed ID: 12018990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitroxides catalytically inhibit nitrite oxidation and heme inactivation induced by H
    Samuni A; Maimon E; Goldstein S
    Free Radic Biol Med; 2016 Dec; 101():491-499. PubMed ID: 27826125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the distinction between nitroxyl and nitric oxide using nitronyl nitroxides.
    Samuni U; Samuni Y; Goldstein S
    J Am Chem Soc; 2010 Jun; 132(24):8428-32. PubMed ID: 20504018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction of the carbonate radical with the spin-trap 5,5-dimethyl-1-pyrroline-N-oxide in chemical and cellular systems: pulse radiolysis, electron paramagnetic resonance, and kinetic-competition studies.
    Alvarez MN; Peluffo G; Folkes L; Wardman P; Radi R
    Free Radic Biol Med; 2007 Dec; 43(11):1523-33. PubMed ID: 17964423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of nitroxide radicals by phenolic and thiol antioxidants.
    Hiramoto K; Ojima N; Kikugawa K
    Free Radic Res; 1997 Jul; 27(1):45-53. PubMed ID: 9269579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential protection by nitroxides and hydroxylamines to radiation-induced and metal ion-catalyzed oxidative damage.
    Xavier S; Yamada K; Samuni AM; Samuni A; DeGraff W; Krishna MC; Mitchell JB
    Biochim Biophys Acta; 2002 Nov; 1573(2):109-20. PubMed ID: 12399020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxylamines inhibit tyrosine oxidation and nitration: The role of their respective nitroxide radicals.
    Samuni A; Goldstein S
    Free Radic Biol Med; 2020 Nov; 160():837-844. PubMed ID: 32866620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ESR and HPLC-EC analysis of the interaction of hydroxyl radical with DMSO: rapid reduction and quantification of POBN and PBN nitroxides.
    Stoyanovsky DA; Melnikov Z; Cederbaum AI
    Anal Chem; 1999 Feb; 71(3):715-21. PubMed ID: 9989388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.