BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 12121621)

  • 1. Cryptochrome-deficient mice lack circadian electrical activity in the suprachiasmatic nuclei.
    Albus H; Bonnefont X; Chaves I; Yasui A; Doczy J; van der Horst GT; Meijer JH
    Curr Biol; 2002 Jul; 12(13):1130-3. PubMed ID: 12121621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light signalling in cryptochrome-deficient mice.
    Bonnefont X; Albus H; Meijer JH; van der Horst GT
    Novartis Found Symp; 2003; 253():56-66; discussion 66-72, 102-9. PubMed ID: 14712914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice.
    Sujino M; Masumoto KH; Yamaguchi S; van der Horst GT; Okamura H; Inouye ST
    Curr Biol; 2003 Apr; 13(8):664-8. PubMed ID: 12699623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Daily variation of clock output gene activation in behaviorally arrhythmic mPer/mCry triple mutant mice.
    Oster H; van der Horst GT; Albrecht U
    Chronobiol Int; 2003 Jul; 20(4):683-95. PubMed ID: 12916720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of mCry2 restores circadian rhythmicity in mPer2 mutant mice.
    Oster H; Yasui A; van der Horst GT; Albrecht U
    Genes Dev; 2002 Oct; 16(20):2633-8. PubMed ID: 12381662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of circadian rhythmicity in aging mPer1-/-mCry2-/- mutant mice.
    Oster H; Baeriswyl S; Van Der Horst GT; Albrecht U
    Genes Dev; 2003 Jun; 17(11):1366-79. PubMed ID: 12782655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential resynchronisation of circadian clock gene expression within the suprachiasmatic nuclei of mice subjected to experimental jet lag.
    Reddy AB; Field MD; Maywood ES; Hastings MH
    J Neurosci; 2002 Sep; 22(17):7326-30. PubMed ID: 12196553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock.
    Okamura H; Miyake S; Sumi Y; Yamaguchi S; Yasui A; Muijtjens M; Hoeijmakers JH; van der Horst GT
    Science; 1999 Dec; 286(5449):2531-4. PubMed ID: 10617474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pleiotropic effects of cryptochromes 1 and 2 on free-running and light-entrained murine circadian rhythms.
    Van Gelder RN; Gibler TM; Tu D; Embry K; Selby CP; Thompson CL; Sancar A
    J Neurogenet; 2002; 16(3):181-203. PubMed ID: 12696673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms.
    Field MD; Maywood ES; O'Brien JA; Weaver DR; Reppert SM; Hastings MH
    Neuron; 2000 Feb; 25(2):437-47. PubMed ID: 10719897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks.
    Ivanchenko M; Stanewsky R; Giebultowicz JM
    J Biol Rhythms; 2001 Jun; 16(3):205-15. PubMed ID: 11407780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of mCLOCK and other circadian clock-relevant proteins in the mouse suprachiasmatic nuclei.
    Maywood ES; O'Brien JA; Hastings MH
    J Neuroendocrinol; 2003 Apr; 15(4):329-34. PubMed ID: 12622829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses.
    Thresher RJ; Vitaterna MH; Miyamoto Y; Kazantsev A; Hsu DS; Petit C; Selby CP; Dawut L; Smithies O; Takahashi JS; Sancar A
    Science; 1998 Nov; 282(5393):1490-4. PubMed ID: 9822380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop.
    Kume K; Zylka MJ; Sriram S; Shearman LP; Weaver DR; Jin X; Maywood ES; Hastings MH; Reppert SM
    Cell; 1999 Jul; 98(2):193-205. PubMed ID: 10428031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oscillating on borrowed time: diffusible signals from immortalized suprachiasmatic nucleus cells regulate circadian rhythmicity in cultured fibroblasts.
    Allen G; Rappe J; Earnest DJ; Cassone VM
    J Neurosci; 2001 Oct; 21(20):7937-43. PubMed ID: 11588167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian profile and photic regulation of clock genes in the suprachiasmatic nucleus of a diurnal mammal Arvicanthis ansorgei.
    Caldelas I; Poirel VJ; Sicard B; Pévet P; Challet E
    Neuroscience; 2003; 116(2):583-91. PubMed ID: 12559113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restoration of circadian rhythmicity in circadian clock-deficient mice in constant light.
    Abraham D; Dallmann R; Steinlechner S; Albrecht U; Eichele G; Oster H
    J Biol Rhythms; 2006 Jun; 21(3):169-76. PubMed ID: 16731656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats.
    Asai M; Yoshinobu Y; Kaneko S; Mori A; Nikaido T; Moriya T; Akiyama M; Shibata S
    J Neurosci Res; 2001 Dec; 66(6):1133-9. PubMed ID: 11746446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms.
    van der Horst GT; Muijtjens M; Kobayashi K; Takano R; Kanno S; Takao M; de Wit J; Verkerk A; Eker AP; van Leenen D; Buijs R; Bootsma D; Hoeijmakers JH; Yasui A
    Nature; 1999 Apr; 398(6728):627-30. PubMed ID: 10217146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A self-sustaining, light-entrainable circadian oscillator in the Drosophila brain.
    Veleri S; Brandes C; Helfrich-Förster C; Hall JC; Stanewsky R
    Curr Biol; 2003 Oct; 13(20):1758-67. PubMed ID: 14561400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.