These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 12121641)

  • 21. Rapid and Recent Evolution of LTR Retrotransposons Drives Rice Genome Evolution During the Speciation of AA-Genome
    Zhang QJ; Gao LZ
    G3 (Bethesda); 2017 Jun; 7(6):1875-1885. PubMed ID: 28413161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide resequencing of KRICE_CORE reveals their potential for future breeding, as well as functional and evolutionary studies in the post-genomic era.
    Kim TS; He Q; Kim KW; Yoon MY; Ra WH; Li FP; Tong W; Yu J; Oo WH; Choi B; Heo EB; Yun BK; Kwon SJ; Kwon SW; Cho YH; Lee CY; Park BS; Park YJ
    BMC Genomics; 2016 May; 17():408. PubMed ID: 27229151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA is structured as a linear "jigsaw puzzle" in the genomes of Arabidopsis, rice, and budding yeast.
    Liu YH; Zhang M; Wu C; Huang JJ; Zhang HB
    Genome; 2014 Jan; 57(1):9-19. PubMed ID: 24564211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Local coexpression domains in the genome of rice show no microsynteny with Arabidopsis domains.
    Ren XY; Stiekema WJ; Nap JP
    Plant Mol Biol; 2007 Sep; 65(1-2):205-17. PubMed ID: 17641976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis.
    Griffiths S; Dunford RP; Coupland G; Laurie DA
    Plant Physiol; 2003 Apr; 131(4):1855-67. PubMed ID: 12692345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequencing and de novo assembly of a near complete indica rice genome.
    Du H; Yu Y; Ma Y; Gao Q; Cao Y; Chen Z; Ma B; Qi M; Li Y; Zhao X; Wang J; Liu K; Qin P; Yang X; Zhu L; Li S; Liang C
    Nat Commun; 2017 May; 8():15324. PubMed ID: 28469237
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots.
    Xiong Y; Liu T; Tian C; Sun S; Li J; Chen M
    Plant Mol Biol; 2005 Sep; 59(1):191-203. PubMed ID: 16217612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution.
    Salse J; Bolot S; Throude M; Jouffe V; Piegu B; Quraishi UM; Calcagno T; Cooke R; Delseny M; Feuillet C
    Plant Cell; 2008 Jan; 20(1):11-24. PubMed ID: 18178768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison and evolution analysis of two rice subspecies LATERAL ORGAN BOUNDARIES domain gene family and their evolutionary characterization from Arabidopsis.
    Yang Y; Yu X; Wu P
    Mol Phylogenet Evol; 2006 Apr; 39(1):248-62. PubMed ID: 16290186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat.
    La Rota M; Sorrells ME
    Funct Integr Genomics; 2004 Mar; 4(1):34-46. PubMed ID: 14740255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes.
    Lawson MJ; Zhang L
    Genome Biol; 2006; 7(2):R14. PubMed ID: 16507170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The TIGR rice genome annotation resource: annotating the rice genome and creating resources for plant biologists.
    Yuan Q; Ouyang S; Liu J; Suh B; Cheung F; Sultana R; Lee D; Quackenbush J; Buell CR
    Nucleic Acids Res; 2003 Jan; 31(1):229-33. PubMed ID: 12519988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biased distribution of microsatellite motifs in the rice genome.
    Grover A; Aishwarya V; Sharma PC
    Mol Genet Genomics; 2007 May; 277(5):469-80. PubMed ID: 17237941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide analysis of Dongxiang wild rice (Oryza rufipogon Griff.) to investigate lost/acquired genes during rice domestication.
    Zhang F; Xu T; Mao L; Yan S; Chen X; Wu Z; Chen R; Luo X; Xie J; Gao S
    BMC Plant Biol; 2016 Apr; 16():103. PubMed ID: 27118394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Public informatics resources for rice and other grasses.
    Cartinhour SW
    Plant Mol Biol; 1997 Sep; 35(1-2):241-51. PubMed ID: 9291977
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis.
    Liu C; Cheng YJ; Wang JW; Weigel D
    Nat Plants; 2017 Sep; 3(9):742-748. PubMed ID: 28848243
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolutionary force of AT-rich repeats to trap genomic and episomal DNAs into the rice genome: lessons from endogenous pararetrovirus.
    Liu R; Koyanagi KO; Chen S; Kishima Y
    Plant J; 2012 Dec; 72(5):817-28. PubMed ID: 22900922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arabidopsis-rice-wheat gene orthologues for Na+ transport and transcript analysis in wheat-L. elongatum aneuploids under salt stress.
    Mullan DJ; Colmer TD; Francki MG
    Mol Genet Genomics; 2007 Feb; 277(2):199-212. PubMed ID: 17103227
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-Wide Nucleosome Occupancy and Positioning and Their Impact on Gene Expression and Evolution in Plants.
    Zhang T; Zhang W; Jiang J
    Plant Physiol; 2015 Aug; 168(4):1406-16. PubMed ID: 26143253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families.
    Lijavetzky D; Carbonero P; Vicente-Carbajosa J
    BMC Evol Biol; 2003 Jul; 3():17. PubMed ID: 12877745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.