These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 12121651)

  • 1. Structural and thermodynamic characterization of the DNA binding properties of a triple alanine mutant of MATalpha2.
    Ke A; Mathias JR; Vershon AK; Wolberger C
    Structure; 2002 Jul; 10(7):961-71. PubMed ID: 12121651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into binding cooperativity of MATa1/MATalpha2 from the crystal structure of a MATa1 homeodomain-maltose binding protein chimera.
    Ke A; Wolberger C
    Protein Sci; 2003 Feb; 12(2):306-12. PubMed ID: 12538894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the yeast MATalpha2/MCM1/DNA ternary complex.
    Tan S; Richmond TJ
    Nature; 1998 Feb; 391(6668):660-6. PubMed ID: 9490409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into nonspecific binding of homeodomains from a structure of MATalpha2 bound to DNA.
    Aishima J; Wolberger C
    Proteins; 2003 Jun; 51(4):544-51. PubMed ID: 12784213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the MATa1/MATalpha2 homeodomain heterodimer in complex with DNA containing an A-tract.
    Li T; Jin Y; Vershon AK; Wolberger C
    Nucleic Acids Res; 1998 Dec; 26(24):5707-18. PubMed ID: 9838003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative ordering in homeodomain-DNA recognition: solution structure and dynamics of the MATa1 homeodomain.
    Anderson JS; Forman MD; Modleski S; Dahlquist FW; Baxter SM
    Biochemistry; 2000 Aug; 39(33):10045-54. PubMed ID: 10955992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the MATa1/MAT alpha 2 homeodomain heterodimer bound to DNA.
    Li T; Stark MR; Johnson AD; Wolberger C
    Science; 1995 Oct; 270(5234):262-9. PubMed ID: 7569974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altering the DNA-binding specificity of the yeast Matalpha 2 homeodomain protein.
    Mathias JR; Zhong H; Jin Y; Vershon AK
    J Biol Chem; 2001 Aug; 276(35):32696-703. PubMed ID: 11438530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The yeast homeodomain protein MATalpha2 shows extended DNA binding specificity in complex with Mcm1.
    Zhong H; Vershon AK
    J Biol Chem; 1997 Mar; 272(13):8402-9. PubMed ID: 9079665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered improvements in DNA-binding function of the MATa1 homeodomain reveal structural changes involved in combinatorial control.
    Hart B; Mathias JR; Ott D; McNaughton L; Anderson JS; Vershon AK; Baxter SM
    J Mol Biol; 2002 Feb; 316(2):247-56. PubMed ID: 11851335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The yeast a1 and alpha2 homeodomain proteins do not contribute equally to heterodimeric DNA binding.
    Jin Y; Zhong H; Vershon AK
    Mol Cell Biol; 1999 Jan; 19(1):585-93. PubMed ID: 9858582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A possible mechanism for partitioning between homo- and heterodimerization of the yeast homeodomain proteins MATa1 and MATalpha2.
    Ho CY; Smith M; Houston ME; Adamson JG; Hodges RS
    J Pept Res; 2002 Jan; 59(1):34-43. PubMed ID: 11906605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engrailed (Gln50-->Lys) homeodomain-DNA complex at 1.9 A resolution: structural basis for enhanced affinity and altered specificity.
    Tucker-Kellogg L; Rould MA; Chambers KA; Ades SE; Sauer RT; Pabo CO
    Structure; 1997 Aug; 5(8):1047-54. PubMed ID: 9309220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallization of the yeast MATalpha2/MCM1/DNA ternary complex: general methods and principles for protein/DNA cocrystallization.
    Tan S; Hunziker Y; Pellegrini L; Richmond TJ
    J Mol Biol; 2000 Apr; 297(4):947-59. PubMed ID: 10736229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arm-domain interactions can provide high binding cooperativity.
    Schleif R; Wolberger C
    Protein Sci; 2004 Oct; 13(10):2829-31. PubMed ID: 15388867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A thermodynamic and structural analysis of DNA minor-groove complex formation.
    Mazur S; Tanious FA; Ding D; Kumar A; Boykin DW; Simpson IJ; Neidle S; Wilson WD
    J Mol Biol; 2000 Jul; 300(2):321-37. PubMed ID: 10873468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for coupling of folding and function in trp repressor: physical characterization of the superrepressor mutant AV77.
    Reedstrom RJ; Royer CA
    J Mol Biol; 1995 Oct; 253(2):266-76. PubMed ID: 7563088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of lysine 55 in determining the specificity of the purine repressor for its operators through minor groove interactions.
    Glasfeld A; Koehler AN; Schumacher MA; Brennan RG
    J Mol Biol; 1999 Aug; 291(2):347-61. PubMed ID: 10438625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Counting the calories to stay in the groove.
    Ladbury JE
    Structure; 1995 Jul; 3(7):635-9. PubMed ID: 8591039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and mutational analysis of affinity-inert contact residues at the growth hormone-receptor interface.
    Pearce KH; Ultsch MH; Kelley RF; de Vos AM; Wells JA
    Biochemistry; 1996 Aug; 35(32):10300-7. PubMed ID: 8756685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.