These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 12121769)

  • 1. Primary structure of a Japanese lacquer tree laccase as a prototype enzyme of multicopper oxidases.
    Nitta K; Kataoka K; Sakurai T
    J Inorg Biochem; 2002 Jul; 91(1):125-31. PubMed ID: 12121769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra.
    Reiss R; Ihssen J; Richter M; Eichhorn E; Schilling B; Thöny-Meyer L
    PLoS One; 2013; 8(6):e65633. PubMed ID: 23755261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on laccases of lacquer trees. III. Reconstruction of laccase from its protein and copper.
    OMURA T
    J Biochem; 1961 Nov; 50():389-93. PubMed ID: 14482010
    [No Abstract]   [Full Text] [Related]  

  • 4. Studies on laccases of lacquer trees. I. Comparison of laccases obtained from Rhus vernicifera and Rhus succedanea.
    OMURA T
    J Biochem; 1961 Sep; 50():264-72. PubMed ID: 14482008
    [No Abstract]   [Full Text] [Related]  

  • 5. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase.
    Sakurai T; Kataoka K
    Chem Rec; 2007; 7(4):220-9. PubMed ID: 17663447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on laccases of lacquer trees. II. Copper exchange studies of Rhus vernicifera laccase using radioactive copper.
    OMURA T
    J Biochem; 1961 Oct; 50():305-11. PubMed ID: 14482009
    [No Abstract]   [Full Text] [Related]  

  • 7. Studies on laccases of lacquer trees. IV. Purification and properties of a blue protein obtained from latex of Rhus vernicifera.
    OMURA T
    J Biochem; 1961 Nov; 50():394-9. PubMed ID: 14482011
    [No Abstract]   [Full Text] [Related]  

  • 8. Intramolecular electron transfer in laccases.
    Farver O; Wherland S; Koroleva O; Loginov DS; Pecht I
    FEBS J; 2011 Sep; 278(18):3463-71. PubMed ID: 21790996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of Japanese-lacquer-tree (Rhus vernicifera) laccase to thermal and chemical denaturation: comparison with ascorbate oxidase.
    Agostinelli E; Cervoni L; Giartosio A; Morpurgo L
    Biochem J; 1995 Mar; 306 ( Pt 3)(Pt 3):697-702. PubMed ID: 7702562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction thermodynamics of the T1 Cu site in plant and fungal laccases.
    Battistuzzi G; Bellei M; Leonardi A; Pierattelli R; De Candia A; Vila AJ; Sola M
    J Biol Inorg Chem; 2005 Dec; 10(8):867-73. PubMed ID: 16231129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning and nucleotide sequence of full-length cDNA for ascorbate oxidase from cultured pumpkin cells.
    Esaka M; Hattori T; Fujisawa K; Sakajo S; Asahi T
    Eur J Biochem; 1990 Aug; 191(3):537-41. PubMed ID: 2143984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of laccase DNA from the Royal Sun medicinal mushroom, Agaricus brasiliensis (higher Basidiomycetes).
    Matsumoto-Akanuma A; Akanuma S; Motoi M; Yamagishi A; Ohno N
    Int J Med Mushrooms; 2014; 16(4):375-93. PubMed ID: 25271866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-glycans in Toxicodendron vernicifluum lacquer laccase.
    Tumurbaatar O; Bo S; Ganzorig O; Miyazaki K; Yoshida T
    Carbohydr Res; 2019 Feb; 474():57-66. PubMed ID: 30738956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a laccase gene from the white-rot fungus Trametes versicolor and structural features of basidiomycete laccases.
    Jönsson L; Sjöström K; Häggström I; Nyman PO
    Biochim Biophys Acta; 1995 Sep; 1251(2):210-5. PubMed ID: 7669813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulse-radiolysis studies on the interaction of one-electron reduced species with blue oxidases. Reduction of native and type-2-copper-depleted Vietnamese-lacquer-tree and Japanese-lacquer-tree laccases.
    O'Neill P; Fielden EM; Morpurgo L; Agostinelli E
    Biochem J; 1984 Aug; 222(1):71-6. PubMed ID: 6089764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopy and reactivity of the type 1 copper site in Fet3p from Saccharomyces cerevisiae: correlation of structure with reactivity in the multicopper oxidases.
    Machonkin TE; Quintanar L; Palmer AE; Hassett R; Severance S; Kosman DJ; Solomon EI
    J Am Chem Soc; 2001 Jun; 123(23):5507-17. PubMed ID: 11389633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning of the cDNA encoding laccase from Pycnoporus cinnabarinus I-937 and expression in Pichia pastoris.
    Otterbein L; Record E; Longhi S; Asther M; Moukha S
    Eur J Biochem; 2000 Mar; 267(6):1619-25. PubMed ID: 10712591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence on freezing of the geometry and redox potential of type 1 and type 2 copper sites of Japanese-lacquer-tree (Rhus vernicifera) laccase.
    Morpurgo L; Calabrese L; Desideri A; Rotilio G
    Biochem J; 1981 Feb; 193(2):639-42. PubMed ID: 6272712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-temperature resonance-Raman spectra of Japanese-lacquer-tree (Rhus vernicifera) laccase, type-2-copper-depleted laccase and H2O2-treated type-2-copper-depleted laccase.
    Musci G; Desideri A; Morpurgo L; Garnier-Suillerot A; Tosi L
    Biochem J; 1983 Aug; 213(2):503-6. PubMed ID: 6225424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and sequence analysis of laccase-encoding cDNA clones from tobacco.
    Kiefer-Meyer MC; Gomord V; O'Connell A; Halpin C; Faye L
    Gene; 1996 Oct; 178(1-2):205-7. PubMed ID: 8921917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.