These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 12121844)
1. Direct effects of acute hypoxia on the reactivity of peripheral arteries of the chicken embryo. Ruijtenbeek K; Kessels CG; Villamor E; Blanco CE; De Mey JG Am J Physiol Regul Integr Comp Physiol; 2002 Aug; 283(2):R331-8. PubMed ID: 12121844 [TBL] [Abstract][Full Text] [Related]
2. Contractile and relaxing reactivity in carotid and femoral arteries of chicken embryos. le Noble FA; Ruijtenbeek K; Gommers S; de Mey JG; Blanco CE Am J Physiol Heart Circ Physiol; 2000 Apr; 278(4):H1261-8. PubMed ID: 10749723 [TBL] [Abstract][Full Text] [Related]
3. Chronic moderate hypoxia and protein malnutrition both induce growth retardation, but have distinct effects on arterial endothelium-dependent reactivity in the chicken embryo. Ruijtenbeek K; Kessels LC; De Mey JG; Blanco CE Pediatr Res; 2003 Apr; 53(4):573-9. PubMed ID: 12612217 [TBL] [Abstract][Full Text] [Related]
4. Heterogeneity of endothelium-dependent mechanisms in different rabbit arteries. Ferrer M; Encabo A; Conde MV; Marín J; Balfagón G J Vasc Res; 1995; 32(5):339-46. PubMed ID: 7578802 [TBL] [Abstract][Full Text] [Related]
5. Acute hypoxia-reoxygenation and vascular oxygen sensing in the chicken embryo. Mohammed R; Salinas CE; Giussani DA; Blanco CE; Cogolludo AL; Villamor E Physiol Rep; 2017 Nov; 5(22):. PubMed ID: 29146864 [TBL] [Abstract][Full Text] [Related]
6. Chronic in ovo hypoxia decreases pulmonary arterial contractile reactivity and induces biventricular cardiac enlargement in the chicken embryo. Villamor E; Kessels CG; Ruijtenbeek K; van Suylen RJ; Belik J; de Mey JG; Blanco CE Am J Physiol Regul Integr Comp Physiol; 2004 Sep; 287(3):R642-51. PubMed ID: 15117730 [TBL] [Abstract][Full Text] [Related]
7. Norepinephrine-induced contraction of isolated rabbit bronchial artery: role of alpha 1- and alpha 2-adrenoceptor activation. Zschauer AO; Sielczak MW; Smith DA; Wanner A J Appl Physiol (1985); 1997 Jun; 82(6):1918-25. PubMed ID: 9173959 [TBL] [Abstract][Full Text] [Related]
8. Hypotension in the chronically hypoxic chicken embryo is related to the β-adrenergic response of chorioallantoic and femoral arteries and not to bradycardia. Lindgren I; Crossley D; Villamor E; Altimiras J Am J Physiol Regul Integr Comp Physiol; 2011 Oct; 301(4):R1161-8. PubMed ID: 21795631 [TBL] [Abstract][Full Text] [Related]
9. Vascular reactivity in intrapulmonary arteries of chicken embryos during transition to ex ovo life. Villamor E; Ruijtenbeek K; Pulgar V; De Mey JG; Blanco CE Am J Physiol Regul Integr Comp Physiol; 2002 Mar; 282(3):R917-27. PubMed ID: 11832415 [TBL] [Abstract][Full Text] [Related]
10. The effects of a novel vasodilator, LP-805, on cytosolic Ca2+ concentrations and on tension in rabbit isolated femoral arteries. Ushio-Fukai M; Hirano K; Kanaide H Br J Pharmacol; 1994 Dec; 113(4):1173-82. PubMed ID: 7889270 [TBL] [Abstract][Full Text] [Related]
11. Development of endothelium-dependent relaxation in canine coronary collateral arteries. Rapps JA; Myers PR; Zhong Q; Parker JL Circulation; 1998 Oct; 98(16):1675-83. PubMed ID: 9778334 [TBL] [Abstract][Full Text] [Related]
13. Influence of applied tension and nitric oxide on responses to endothelins in rat pulmonary resistance arteries: effect of chronic hypoxia. MacLean MR; McCulloch KM Br J Pharmacol; 1998 Mar; 123(5):991-9. PubMed ID: 9535030 [TBL] [Abstract][Full Text] [Related]
14. Effects of exercise training on responses of peripheral and visceral arteries in swine. McAllister RM; Kimani JK; Webster JL; Parker JL; Laughlin MH J Appl Physiol (1985); 1996 Jan; 80(1):216-25. PubMed ID: 8847306 [TBL] [Abstract][Full Text] [Related]
15. Ontogeny of chicken ductus arteriosus response to oxygen and vasoconstrictors. Agren P; Cogolludo AL; Kessels CG; Pérez-Vizcaíno F; De Mey JG; Blanco CE; Villamor E Am J Physiol Regul Integr Comp Physiol; 2007 Jan; 292(1):R485-96. PubMed ID: 16917023 [TBL] [Abstract][Full Text] [Related]
16. Preferential impairment of nitric oxide-mediated endothelium-dependent relaxation in human cervical arteries after irradiation. Sugihara T; Hattori Y; Yamamoto Y; Qi F; Ichikawa R; Sato A; Liu MY; Abe K; Kanno M Circulation; 1999 Aug; 100(6):635-41. PubMed ID: 10441101 [TBL] [Abstract][Full Text] [Related]
17. Hypoxia sensing in the fetal chicken femoral artery is mediated by the mitochondrial electron transport chain. Zoer B; Cogolludo AL; Perez-Vizcaino F; De Mey JG; Blanco CE; Villamor E Am J Physiol Regul Integr Comp Physiol; 2010 Apr; 298(4):R1026-34. PubMed ID: 20089711 [TBL] [Abstract][Full Text] [Related]
18. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries. Prieto D; Simonsen U; Hernández M; García-Sacristán A Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568 [TBL] [Abstract][Full Text] [Related]
19. Role of endothelium and K+ channels in dobutamine-induced relaxation in rat mesenteric artery. Huang Y; Kwok KH; Chan NW; Lau CW; Chen ZY Clin Exp Pharmacol Physiol; 1998 Jun; 25(6):405-11. PubMed ID: 9673814 [TBL] [Abstract][Full Text] [Related]
20. Chronic hypoxia inhibits contraction of fetal arteries by increased endothelium-derived nitric oxide and prostaglandin synthesis. Thompson LP; Aguan K; Zhou H J Soc Gynecol Investig; 2004 Dec; 11(8):511-20. PubMed ID: 15582495 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]