BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 12121992)

  • 21. Adducin in platelets: activation-induced phosphorylation by PKC and proteolysis by calpain.
    Gilligan DM; Sarid R; Weese J
    Blood; 2002 Apr; 99(7):2418-26. PubMed ID: 11895774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A critical role for N-ethylmaleimide-sensitive fusion protein (NSF) in platelet granule secretion.
    Polgár J; Reed GL
    Blood; 1999 Aug; 94(4):1313-8. PubMed ID: 10438719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of calpeptin (a calpain specific inhibitor) on agonist induced microparticle formation from the platelet plasma membrane.
    Yano Y; Shiba E; Kambayashi J; Sakon M; Kawasaki T; Fujitani K; Kang J; Mori T
    Thromb Res; 1993 Sep; 71(5):385-96. PubMed ID: 8236165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The secretory mechanisms in equine platelets are independent of cytoskeletal polymerization and occur through membrane fusion.
    Brunso L; Segura D; Monreal L; Escolar G; White JG; Diaz-Ricart M
    Platelets; 2010; 21(8):658-66. PubMed ID: 20958115
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Negative regulation of neurotransmitter release by calpain: a possible involvement of specific SNAP-25 cleavage.
    Ando K; Kudo Y; Takahashi M
    J Neurochem; 2005 Aug; 94(3):651-8. PubMed ID: 15992386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular basis of platelet granule secretion.
    Flaumenhaft R
    Arterioscler Thromb Vasc Biol; 2003 Jul; 23(7):1152-60. PubMed ID: 12738684
    [TBL] [Abstract][Full Text] [Related]  

  • 27. VAMP-7 links granule exocytosis to actin reorganization during platelet activation.
    Koseoglu S; Peters CG; Fitch-Tewfik JL; Aisiku O; Danglot L; Galli T; Flaumenhaft R
    Blood; 2015 Jul; 126(5):651-60. PubMed ID: 25999457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of plasma membrane Ca2+-ATPase in human platelets by calpain.
    Brown CS; Dean WL
    Platelets; 2007 May; 18(3):207-11. PubMed ID: 17497432
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for a calpeptin-sensitive protein-tyrosine phosphatase upstream of the small GTPase Rho. A novel role for the calpain inhibitor calpeptin in the inhibition of protein-tyrosine phosphatases.
    Schoenwaelder SM; Burridge K
    J Biol Chem; 1999 May; 274(20):14359-67. PubMed ID: 10318859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Platelet adhesion enhances the glycoprotein VI-dependent procoagulant response: Involvement of p38 MAP kinase and calpain.
    Siljander P; Farndale RW; Feijge MA; Comfurius P; Kos S; Bevers EM; Heemskerk JW
    Arterioscler Thromb Vasc Biol; 2001 Apr; 21(4):618-27. PubMed ID: 11304481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cholecystokinin-regulated exocytosis in rat pancreatic acinar cells is inhibited by a C-terminus truncated mutant of SNAP-23.
    Huang X; Sheu L; Tamori Y; Trimble WS; Gaisano HY
    Pancreas; 2001 Aug; 23(2):125-33. PubMed ID: 11484914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane fusion by VAMP3 and plasma membrane t-SNAREs.
    Hu C; Hardee D; Minnear F
    Exp Cell Res; 2007 Sep; 313(15):3198-209. PubMed ID: 17651732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Palmitoylated peptides from the cysteine-rich domain of SNAP-23 cause membrane fusion depending on peptide length, position of cysteines, and extent of palmitoylation.
    Pallavi B; Nagaraj R
    J Biol Chem; 2003 Apr; 278(15):12737-44. PubMed ID: 12551899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characteristics of various synthetic peptide calpain inhibitors and their application for the analysis of platelet reaction.
    Ariyoshi H; Shiba E; Kambayashi J; Sakon M; Tsujinaka T; Uemura Y; Mori T
    Biochem Int; 1991 Apr; 23(6):1019-33. PubMed ID: 1953797
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Function of the t-SNARE SNAP-23 and secretory carrier membrane proteins (SCAMPs) in exocytosis in mast cells.
    Castle JD; Guo Z; Liu L
    Mol Immunol; 2002 Sep; 38(16-18):1337-40. PubMed ID: 12217404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The nuts and bolts of the platelet release reaction.
    Joshi S; Whiteheart SW
    Platelets; 2017 Mar; 28(2):129-137. PubMed ID: 27848265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Granule exocytosis contributes to priming and activation of the human neutrophil respiratory burst.
    Uriarte SM; Rane MJ; Luerman GC; Barati MT; Ward RA; Nauseef WM; McLeish KR
    J Immunol; 2011 Jul; 187(1):391-400. PubMed ID: 21642540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of the role of calpain as a stimulus-response mediator in human platelets using new synthetic inhibitors.
    Anagli J; Hagmann J; Shaw E
    Biochem J; 1991 Mar; 274 ( Pt 2)(Pt 2):497-502. PubMed ID: 2006912
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of caspase in a subset of human platelet activation responses.
    Shcherbina A; Remold-O'Donnell E
    Blood; 1999 Jun; 93(12):4222-31. PubMed ID: 10361119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation.
    Wolf BB; Goldstein JC; Stennicke HR; Beere H; Amarante-Mendes GP; Salvesen GS; Green DR
    Blood; 1999 Sep; 94(5):1683-92. PubMed ID: 10477693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.