These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 12122010)

  • 1. A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins.
    Karlson D; Nakaminami K; Toyomasu T; Imai R
    J Biol Chem; 2002 Sep; 277(38):35248-56. PubMed ID: 12122010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat stable ssDNA/RNA-binding activity of a wheat cold shock domain protein.
    Nakaminami K; Sasaki K; Kajita S; Takeda H; Karlson D; Ohgi K; Imai R
    FEBS Lett; 2005 Aug; 579(21):4887-91. PubMed ID: 16109414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional conservation of cold shock domains in bacteria and higher plants.
    Nakaminami K; Karlson DT; Imai R
    Proc Natl Acad Sci U S A; 2006 Jun; 103(26):10122-7. PubMed ID: 16788067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural features important for the RNA chaperone activity of zinc finger-containing glycine-rich RNA-binding proteins from wheat (Triticum avestivum) and rice (Oryza sativa).
    Xu T; Han JH; Kang H
    Phytochemistry; 2013 Oct; 94():28-35. PubMed ID: 23787154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development- and cold-regulated accumulation of cold shock domain proteins in wheat.
    Radkova M; Vítámvás P; Sasaki K; Imai R
    Plant Physiol Biochem; 2014 Apr; 77():44-8. PubMed ID: 24534004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins.
    Chaikam V; Karlson DT
    BMB Rep; 2010 Jan; 43(1):1-8. PubMed ID: 20132728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of two cold shock domain proteins from Oryza sativa.
    Chaikam V; Karlson D
    Plant Cell Environ; 2008 Jul; 31(7):995-1006. PubMed ID: 18397370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acquisition of double-stranded DNA-binding ability in a hybrid protein between Escherichia coli CspA and the cold shock domain of human YB-1.
    Wang N; Yamanaka K; Inouye M
    Mol Microbiol; 2000 Nov; 38(3):526-34. PubMed ID: 11069676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flooding stress-induced glycine-rich RNA-binding protein from Nicotiana tabacum.
    Lee MO; Kim KP; Kim BG; Hahn JS; Hong CB
    Mol Cells; 2009 Jan; 27(1):47-54. PubMed ID: 19214433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The C-terminal zinc finger domain of Arabidopsis cold shock domain proteins is important for RNA chaperone activity during cold adaptation.
    Park SJ; Kwak KJ; Jung HJ; Lee HJ; Kang H
    Phytochemistry; 2010 Apr; 71(5-6):543-7. PubMed ID: 20060550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cold inducible multidomain cystatin from winter wheat inhibits growth of the snow mold fungus, Microdochium nivale.
    Christova PK; Christov NK; Imai R
    Planta; 2006 May; 223(6):1207-18. PubMed ID: 16320069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cDNA encoding a wheat (Triticum aestivum cv. Chinese spring) glycine-rich RNA-binding protein.
    Guiltinan MJ; Niu X
    Plant Mol Biol; 1996 Mar; 30(6):1301-6. PubMed ID: 8704137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional properties of the evolutionarily ancient Y-box family of nucleic acid binding proteins.
    Wolffe AP
    Bioessays; 1994 Apr; 16(4):245-51. PubMed ID: 8031301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression and genetic mapping analyses of a perennial ryegrass glycine-rich RNA-binding protein gene suggest a role in cold adaptation.
    Shinozuka H; Hisano H; Yoneyama S; Shimamoto Y; Jones ES; Forster JW; Yamada T; Kanazawa A
    Mol Genet Genomics; 2006 Apr; 275(4):399-408. PubMed ID: 16614778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the 5'-end untranslated region of the mRNA for CspA, the major cold-shock protein of Escherichia coli, in cold-shock adaptation.
    Jiang W; Fang L; Inouye M
    J Bacteriol; 1996 Aug; 178(16):4919-25. PubMed ID: 8759856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions.
    Park SJ; Kwak KJ; Oh TR; Kim YO; Kang H
    Plant Cell Physiol; 2009 Apr; 50(4):869-78. PubMed ID: 19258348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-temperature-responsive gene from barley encodes a protein with single-stranded nucleic acid-binding activity which is phosphorylated in vitro.
    Dunn MA; Brown K; Lightowlers R; Hughes MA
    Plant Mol Biol; 1996 Mar; 30(5):947-59. PubMed ID: 8639753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation.
    Koike M; Okamoto T; Tsuda S; Imai R
    Biochem Biophys Res Commun; 2002 Oct; 298(1):46-53. PubMed ID: 12379218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and biochemical characterization of a cold-regulated phosphoethanolamine N-methyltransferase from wheat.
    Charron JB; Breton G; Danyluk J; Muzac I; Ibrahim RK; Sarhan F
    Plant Physiol; 2002 May; 129(1):363-73. PubMed ID: 12011366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel cold-regulated cold shock domain containing protein from scallop Chlamys farreri with nucleic acid-binding activity.
    Yang C; Wang L; Siva VS; Shi X; Jiang Q; Wang J; Zhang H; Song L
    PLoS One; 2012; 7(2):e32012. PubMed ID: 22359656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.