BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 12122022)

  • 1. Molecular analysis of a novel family of complex glycoinositolphosphoryl ceramides from Cryptococcus neoformans: structural differences between encapsulated and acapsular yeast forms.
    Heise N; Gutierrez AL; Mattos KA; Jones C; Wait R; Previato JO; Mendonça-Previato L
    Glycobiology; 2002 Jul; 12(7):409-20. PubMed ID: 12122022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of glycoinositolphosphoryl ceramide structure mutant strains of Cryptococcus neoformans.
    Gutierrez AL; Farage L; Melo MN; Mohana-Borges RS; Guerardel Y; Coddeville B; Wieruszeski JM; Mendonça-Previato L; Previato JO
    Glycobiology; 2007 Jun; 17(6):1-11C. PubMed ID: 17369287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycosylinositolphosphoceramides in Aspergillus fumigatus.
    Simenel C; Coddeville B; Delepierre M; Latgé JP; Fontaine T
    Glycobiology; 2008 Jan; 18(1):84-96. PubMed ID: 17971386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of glycosylinositol phosphorylceramides expressed by the opportunistic mycopathogen Aspergillus fumigatus.
    Toledo MS; Levery SB; Bennion B; Guimaraes LL; Castle SA; Lindsey R; Momany M; Park C; Straus AH; Takahashi HK
    J Lipid Res; 2007 Aug; 48(8):1801-24. PubMed ID: 17488996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucuronoxylomannan of Cryptococcus neoformans serotype B: structural analysis by gas-liquid chromatography-mass spectrometry and 13C-nuclear magnetic resonance spectroscopy.
    Turner SH; Cherniak R
    Carbohydr Res; 1991 Apr; 211(1):103-16. PubMed ID: 1773425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of novel structures of mannosylinositolphosphorylceramides from the yeast forms of Sporothrix schenckii.
    Loureiro y Penha CV; Todeschini AR; Lopes-Bezerra LM; Wait R; Jones C; Mattos KA; Heise N; Mendonça-Previato L; Previato JO
    Eur J Biochem; 2001 Aug; 268(15):4243-50. PubMed ID: 11488918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical survey of the polar head of plant glycosylinositolphosphoceramides unravels broad diversity.
    Cacas JL; Buré C; Furt F; Maalouf JP; Badoc A; Cluzet S; Schmitter JM; Antajan E; Mongrand S
    Phytochemistry; 2013 Dec; 96():191-200. PubMed ID: 23993446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterization of the galactoxylomannan of Cryptococcus neoformans Cap67.
    Vaishnav VV; Bacon BE; O'Neill M; Cherniak R
    Carbohydr Res; 1998 Jan; 306(1-2):315-30. PubMed ID: 9691456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast screening of highly glycosylated plant sphingolipids by tandem mass spectrometry.
    Buré C; Cacas JL; Wang F; Gaudin K; Domergue F; Mongrand S; Schmitter JM
    Rapid Commun Mass Spectrom; 2011 Oct; 25(20):3131-45. PubMed ID: 21953969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile syntheses of the hexasaccharide repeating unit of the exopolysaccharide from Cryptococcus neoformans serovar A.
    Zhang J; Kong F
    Bioorg Med Chem; 2003 Sep; 11(18):4027-37. PubMed ID: 12927865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural variability in the glucuronoxylomannan of Cryptococcus neoformans serotype A isolates determined by 13C NMR spectroscopy.
    Turner SH; Cherniak R; Reiss E; Kwon-Chung KJ
    Carbohydr Res; 1992 Sep; 233():205-18. PubMed ID: 1446309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Galactoxylomannans of Cryptococcus neoformans.
    James PG; Cherniak R
    Infect Immun; 1992 Mar; 60(3):1084-8. PubMed ID: 1541523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry.
    Buré C; Cacas JL; Mongrand S; Schmitter JM
    Anal Bioanal Chem; 2014 Feb; 406(4):995-1010. PubMed ID: 23887274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural elucidation of novel phosphocholine-containing glycosylinositol-phosphoceramides in filamentous fungi and their induction of cell death of cultured rice cells.
    Aoki K; Uchiyama R; Itonori S; Sugita M; Che FS; Isogai A; Hada N; Hada J; Takeda T; Kumagai H; Yamamoto K
    Biochem J; 2004 Mar; 378(Pt 2):461-72. PubMed ID: 14583095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation, characterization and immunolocalization of phosphorylcholine-substituted glycolipids in developmental stages of Caenorhabditis elegans.
    Gerdt S; Dennis RD; Borgonie G; Schnabel R; Geyer R
    Eur J Biochem; 1999 Dec; 266(3):952-63. PubMed ID: 10583390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chasing the Major Sphingolipids on Earth: Automated Annotation of Plant Glycosyl Inositol Phospho Ceramides by Glycolipidomics.
    Panzenboeck L; Troppmair N; Schlachter S; Koellensperger G; Hartler J; Rampler E
    Metabolites; 2020 Sep; 10(9):. PubMed ID: 32961698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of glycosylinositol phosphorylceramides from fungi by electrospray tandem mass spectrometry with low-energy collision-induced dissociation of Li(+) adduct ions.
    Levery SB; Toledo MS; Straus AH; Takahashi HK
    Rapid Commun Mass Spectrom; 2001; 15(23):2240-58. PubMed ID: 11746891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the galactosyltransferase of Cryptococcus neoformans involved in the biosynthesis of basidiomycete-type glycosylinositolphosphoceramide.
    Wohlschlager T; Buser R; Skowyra ML; Haynes BC; Henrissat B; Doering TL; Künzler M; Aebi M
    Glycobiology; 2013 Nov; 23(11):1210-9. PubMed ID: 23926231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling unique structure and biosynthesis pathway of N-linked glycans in human fungal pathogen Cryptococcus neoformans by glycomics analysis.
    Park JN; Lee DJ; Kwon O; Oh DB; Bahn YS; Kang HA
    J Biol Chem; 2012 Jun; 287(23):19501-15. PubMed ID: 22500028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GIPC: Glycosyl Inositol Phospho Ceramides, the major sphingolipids on earth.
    Gronnier J; Germain V; Gouguet P; Cacas JL; Mongrand S
    Plant Signal Behav; 2016; 11(4):e1152438. PubMed ID: 27074617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.