BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 12122140)

  • 1. Physical mobilization of secretory vesicles facilitates neuropeptide release by nerve growth factor-differentiated PC12 cells.
    Ng YK; Lu X; Levitan ES
    J Physiol; 2002 Jul; 542(Pt 2):395-402. PubMed ID: 12122140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unexpected mobility variation among individual secretory vesicles produces an apparent refractory neuropeptide pool.
    Ng YK; Lu X; Gulacsi A; Han W; Saxton MJ; Levitan ES
    Biophys J; 2003 Jun; 84(6):4127-34. PubMed ID: 12770915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nerve growth factor-induced differentiation changes the cellular organization of regulated Peptide release by PC12 cells.
    Ng YK; Lu X; Watkins SC; Ellis-Davies GC; Levitan ES
    J Neurosci; 2002 May; 22(10):3890-7. PubMed ID: 12019308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycalolide B dissociates dynactin and abolishes retrograde axonal transport of dense-core vesicles.
    Cavolo SL; Zhou C; Ketcham SA; Suzuki MM; Ukalovic K; Silverman MA; Schroer TA; Levitan ES
    Mol Biol Cell; 2015 Jul; 26(14):2664-72. PubMed ID: 26023088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The secretory response through electric stimulation of differentiated PC12 rat pheochromocytoma cells transfected with neuropeptide Y fused with enhanced green fluorescent protein.
    Mizuno A; Mie M; Yanagida Y; Aizawa M; Kobatake E
    Biotechnol Lett; 2003 Apr; 25(7):547-52. PubMed ID: 12882143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rab27A and its effector MyRIP link secretory granules to F-actin and control their motion towards release sites.
    Desnos C; Schonn JS; Huet S; Tran VS; El-Amraoui A; Raposo G; Fanget I; Chapuis C; Ménasché G; de Saint Basile G; Petit C; Cribier S; Henry JP; Darchen F
    J Cell Biol; 2003 Nov; 163(3):559-70. PubMed ID: 14610058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium requirements for exocytosis do not delimit the releasable neuropeptide pool.
    Lu X; Ellis-Davies GC; Levitan ES
    Cell Calcium; 2003 Apr; 33(4):267-71. PubMed ID: 12618147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of immature secretory granules: role of cytoskeletal elements during transport, cortical restriction, and F-actin-dependent tethering.
    Rudolf R; Salm T; Rustom A; Gerdes HH
    Mol Biol Cell; 2001 May; 12(5):1353-65. PubMed ID: 11359927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity Induces Fmr1-Sensitive Synaptic Capture of Anterograde Circulating Neuropeptide Vesicles.
    Cavolo SL; Bulgari D; Deitcher DL; Levitan ES
    J Neurosci; 2016 Nov; 36(46):11781-11787. PubMed ID: 27852784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting of green fluorescent protein to neuroendocrine secretory granules: a new tool for real time studies of regulated protein secretion.
    Kaether C; Salm T; Glombik M; Almers W; Gerdes HH
    Eur J Cell Biol; 1997 Oct; 74(2):133-42. PubMed ID: 9352218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convergent effects of lithium and valproate on the expression of proteins associated with large dense core vesicles in NGF-differentiated PC12 cells.
    Cordeiro ML; Gundersen CB; Umbach JA
    Neuropsychopharmacology; 2004 Jan; 29(1):39-44. PubMed ID: 12955095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myopic (HD-PTP, PTPN23) selectively regulates synaptic neuropeptide release.
    Bulgari D; Jha A; Deitcher DL; Levitan ES
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):1617-1622. PubMed ID: 29378961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of interleukin-6 via the regulated secretory pathway in PC12 cells.
    Möller JC; Krüttgen A; Burmester R; Weis J; Oertel WH; Shooter EM
    Neurosci Lett; 2006 May; 400(1-2):75-9. PubMed ID: 16503378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuropeptide release by efficient recruitment of diffusing cytoplasmic secretory vesicles.
    Han W; Ng YK; Axelrod D; Levitan ES
    Proc Natl Acad Sci U S A; 1999 Dec; 96(25):14577-82. PubMed ID: 10588747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptotagmin VII modulates the kinetics of dense-core vesicle exocytosis in PC12 cells.
    Tsuboi T; Fukuda M
    Genes Cells; 2007 Apr; 12(4):511-9. PubMed ID: 17397398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of peptidergic vesicle mobility by secretagogues.
    Washburn CL; Bean JE; Silverman MA; Pellegrino MJ; Yates PA; Allen RG
    Traffic; 2002 Nov; 3(11):801-9. PubMed ID: 12383346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of cargo release from dense core granules by size and actin network.
    Felmy F
    Traffic; 2007 Aug; 8(8):983-97. PubMed ID: 17506863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo imaging of vesicle motion and release at the Drosophila neuromuscular junction.
    Levitan ES; Lanni F; Shakiryanova D
    Nat Protoc; 2007; 2(5):1117-25. PubMed ID: 17546002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can an increase in neuropeptide production in the soma lead to DCV circulation in axon terminals with type III en passant boutons?
    Kuznetsov IA; Kuznetsov AV
    Math Biosci; 2015 Sep; 267():61-78. PubMed ID: 26122837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic ethanol exposure inhibits dopamine release via effects on the presynaptic actin cytoskeleton in PC12 cells.
    Funk CK; Dohrman DP
    Brain Res; 2007 Dec; 1185():86-94. PubMed ID: 17996852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.