These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 1212225)
1. The thermochemical characterization of sodium dithionite, flavin mononucleotide, flavin-adenine dinucleotide and methyl and benzyl viologens as low-potential reductants for biological systems. Watts GD; Burns A Biochem J; 1975 Oct; 152(1):33-7. PubMed ID: 1212225 [TBL] [Abstract][Full Text] [Related]
2. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains. Sevrioukova I; Truan G; Peterson JA Biochemistry; 1996 Jun; 35(23):7528-35. PubMed ID: 8652532 [TBL] [Abstract][Full Text] [Related]
3. A chemical preparation of pure reduced viologens for use as biomolecular reducing reagents. Corbin JL; Watt GD Anal Biochem; 1990 Apr; 186(1):86-9. PubMed ID: 2356972 [TBL] [Abstract][Full Text] [Related]
4. Differences in proton-coupled electron-transfer reactions of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) between buffered and unbuffered aqueous solutions. Tan SL; Kan JM; Webster RD J Phys Chem B; 2013 Nov; 117(44):13755-66. PubMed ID: 24079606 [TBL] [Abstract][Full Text] [Related]
5. The flavoprotein component of the Escherichia coli sulfite reductase: expression, purification, and spectral and catalytic properties of a monomeric form containing both the flavin adenine dinucleotide and the flavin mononucleotide cofactors. Zeghouf M; Fontecave M; Macherel D; Covès J Biochemistry; 1998 Apr; 37(17):6114-23. PubMed ID: 9558350 [TBL] [Abstract][Full Text] [Related]
6. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3. Sevrioukova I; Shaffer C; Ballou DP; Peterson JA Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamic basis of electron transfer in dihydroorotate dehydrogenase B from Lactococcus lactis: analysis by potentiometry, EPR spectroscopy, and ENDOR spectroscopy. Mohsen AW; Rigby SE; Jensen KF; Munro AW; Scrutton NS Biochemistry; 2004 Jun; 43(21):6498-510. PubMed ID: 15157083 [TBL] [Abstract][Full Text] [Related]
8. The nitrate-reducing enzyme system of Chlamydomonas reinhardii. Barea JL; Cárdenas J Arch Microbiol; 1975 Sep; 105(1):21-5. PubMed ID: 242292 [TBL] [Abstract][Full Text] [Related]
9. Redox properties of the isolated flavin mononucleotide- and flavin adenine dinucleotide-binding domains of neuronal nitric oxide synthase. Garnaud PE; Koetsier M; Ost TW; Daff S Biochemistry; 2004 Aug; 43(34):11035-44. PubMed ID: 15323562 [TBL] [Abstract][Full Text] [Related]
10. Calorimetric studies of flavin-binding proteins: FMN and FAD binding to hen egg riboflavin-binding proteins. Nowak HP; Langerman N Arch Biochem Biophys; 1982 Mar; 214(1):231-8. PubMed ID: 7081998 [No Abstract] [Full Text] [Related]
11. Molecular dissection of human methionine synthase reductase: determination of the flavin redox potentials in full-length enzyme and isolated flavin-binding domains. Wolthers KR; Basran J; Munro AW; Scrutton NS Biochemistry; 2003 Apr; 42(13):3911-20. PubMed ID: 12667082 [TBL] [Abstract][Full Text] [Related]
12. Reduced diphosphopyridine nucleotide peroxidase. Intermediates formed on reduction of the enzyme with dithionite or reduced diphosphopyridine nucleotide. Dolin MI J Biol Chem; 1975 Jan; 250(1):310-7. PubMed ID: 166990 [TBL] [Abstract][Full Text] [Related]
13. Flavin-sensitized photoreduction of thymidine glycol. Ito T; Kondo A; Terada S; Nishimoto S Bioorg Med Chem Lett; 2007 Nov; 17(22):6129-33. PubMed ID: 17897825 [TBL] [Abstract][Full Text] [Related]
14. Steady-state and laser flash induced photoreduction of yeast glutathione reductase by 5-deazariboflavin and by a viologen analogue: stabilization of flavin adenine dinucleotide semiquinone species by complexation. Navarro JA; Roncel M; Tollin G Biochemistry; 1990 Jun; 29(25):6102-7. PubMed ID: 2383572 [TBL] [Abstract][Full Text] [Related]
15. Energetics of the one-electron reduction steps of riboflavin, FMN and FAD to their fully reduced forms. Anderson RF Biochim Biophys Acta; 1983 Jan; 722(1):158-62. PubMed ID: 6824643 [No Abstract] [Full Text] [Related]
16. NITRATE REDUCTION WITH MOLECULAR HYDROGEN IN A RECONSTITUTED ENZYMATIC SYSTEM. DELCAMPO FF; PANEQUE A; RAMIREZ JM; LOSADA M Nature; 1965 Jan; 205():387-8. PubMed ID: 14243418 [No Abstract] [Full Text] [Related]
17. Kinetic and thermodynamic characterization of the common polymorphic variants of human methionine synthase reductase. Olteanu H; Wolthers KR; Munro AW; Scrutton NS; Banerjee R Biochemistry; 2004 Feb; 43(7):1988-97. PubMed ID: 14967039 [TBL] [Abstract][Full Text] [Related]
18. Studies on yeast sulfite reductase. 3. Further characterization. Yoshimoto A; Sato R Biochim Biophys Acta; 1970 Nov; 220(2):190-205. PubMed ID: 4395131 [No Abstract] [Full Text] [Related]
19. Covalent attachment of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to enzymes: the current state of affairs. Mewies M; McIntire WS; Scrutton NS Protein Sci; 1998 Jan; 7(1):7-20. PubMed ID: 9514256 [TBL] [Abstract][Full Text] [Related]
20. Reduction of oxygen-pulsed cytochrome c oxidase by cytochrome c and other electron donors. Petersen LC; Cox RP Biochim Biophys Acta; 1980 Mar; 590(1):128-37. PubMed ID: 6243971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]