BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 1212225)

  • 1. The thermochemical characterization of sodium dithionite, flavin mononucleotide, flavin-adenine dinucleotide and methyl and benzyl viologens as low-potential reductants for biological systems.
    Watts GD; Burns A
    Biochem J; 1975 Oct; 152(1):33-7. PubMed ID: 1212225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains.
    Sevrioukova I; Truan G; Peterson JA
    Biochemistry; 1996 Jun; 35(23):7528-35. PubMed ID: 8652532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A chemical preparation of pure reduced viologens for use as biomolecular reducing reagents.
    Corbin JL; Watt GD
    Anal Biochem; 1990 Apr; 186(1):86-9. PubMed ID: 2356972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in proton-coupled electron-transfer reactions of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) between buffered and unbuffered aqueous solutions.
    Tan SL; Kan JM; Webster RD
    J Phys Chem B; 2013 Nov; 117(44):13755-66. PubMed ID: 24079606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The flavoprotein component of the Escherichia coli sulfite reductase: expression, purification, and spectral and catalytic properties of a monomeric form containing both the flavin adenine dinucleotide and the flavin mononucleotide cofactors.
    Zeghouf M; Fontecave M; Macherel D; Covès J
    Biochemistry; 1998 Apr; 37(17):6114-23. PubMed ID: 9558350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic basis of electron transfer in dihydroorotate dehydrogenase B from Lactococcus lactis: analysis by potentiometry, EPR spectroscopy, and ENDOR spectroscopy.
    Mohsen AW; Rigby SE; Jensen KF; Munro AW; Scrutton NS
    Biochemistry; 2004 Jun; 43(21):6498-510. PubMed ID: 15157083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nitrate-reducing enzyme system of Chlamydomonas reinhardii.
    Barea JL; Cárdenas J
    Arch Microbiol; 1975 Sep; 105(1):21-5. PubMed ID: 242292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox properties of the isolated flavin mononucleotide- and flavin adenine dinucleotide-binding domains of neuronal nitric oxide synthase.
    Garnaud PE; Koetsier M; Ost TW; Daff S
    Biochemistry; 2004 Aug; 43(34):11035-44. PubMed ID: 15323562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calorimetric studies of flavin-binding proteins: FMN and FAD binding to hen egg riboflavin-binding proteins.
    Nowak HP; Langerman N
    Arch Biochem Biophys; 1982 Mar; 214(1):231-8. PubMed ID: 7081998
    [No Abstract]   [Full Text] [Related]  

  • 11. Molecular dissection of human methionine synthase reductase: determination of the flavin redox potentials in full-length enzyme and isolated flavin-binding domains.
    Wolthers KR; Basran J; Munro AW; Scrutton NS
    Biochemistry; 2003 Apr; 42(13):3911-20. PubMed ID: 12667082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced diphosphopyridine nucleotide peroxidase. Intermediates formed on reduction of the enzyme with dithionite or reduced diphosphopyridine nucleotide.
    Dolin MI
    J Biol Chem; 1975 Jan; 250(1):310-7. PubMed ID: 166990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flavin-sensitized photoreduction of thymidine glycol.
    Ito T; Kondo A; Terada S; Nishimoto S
    Bioorg Med Chem Lett; 2007 Nov; 17(22):6129-33. PubMed ID: 17897825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steady-state and laser flash induced photoreduction of yeast glutathione reductase by 5-deazariboflavin and by a viologen analogue: stabilization of flavin adenine dinucleotide semiquinone species by complexation.
    Navarro JA; Roncel M; Tollin G
    Biochemistry; 1990 Jun; 29(25):6102-7. PubMed ID: 2383572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics of the one-electron reduction steps of riboflavin, FMN and FAD to their fully reduced forms.
    Anderson RF
    Biochim Biophys Acta; 1983 Jan; 722(1):158-62. PubMed ID: 6824643
    [No Abstract]   [Full Text] [Related]  

  • 16. NITRATE REDUCTION WITH MOLECULAR HYDROGEN IN A RECONSTITUTED ENZYMATIC SYSTEM.
    DELCAMPO FF; PANEQUE A; RAMIREZ JM; LOSADA M
    Nature; 1965 Jan; 205():387-8. PubMed ID: 14243418
    [No Abstract]   [Full Text] [Related]  

  • 17. Kinetic and thermodynamic characterization of the common polymorphic variants of human methionine synthase reductase.
    Olteanu H; Wolthers KR; Munro AW; Scrutton NS; Banerjee R
    Biochemistry; 2004 Feb; 43(7):1988-97. PubMed ID: 14967039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on yeast sulfite reductase. 3. Further characterization.
    Yoshimoto A; Sato R
    Biochim Biophys Acta; 1970 Nov; 220(2):190-205. PubMed ID: 4395131
    [No Abstract]   [Full Text] [Related]  

  • 19. Covalent attachment of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to enzymes: the current state of affairs.
    Mewies M; McIntire WS; Scrutton NS
    Protein Sci; 1998 Jan; 7(1):7-20. PubMed ID: 9514256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of oxygen-pulsed cytochrome c oxidase by cytochrome c and other electron donors.
    Petersen LC; Cox RP
    Biochim Biophys Acta; 1980 Mar; 590(1):128-37. PubMed ID: 6243971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.