These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12122256)

  • 41. The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics.
    Rouboa A; Silva A; Leal L; Rocha J; Alves F
    J Biomech; 2006; 39(7):1239-48. PubMed ID: 15950980
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flow characterization of the ADVANTAGE and St. Jude Medical bileaflet mechanical heart valves.
    Shu MC; O'Rourke KK; Coppin CM; Lemmon JD
    J Heart Valve Dis; 2004 Sep; 13(5):814-22. PubMed ID: 15473485
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Time-dependent analysis of leaflets in mechanical aortic bileaflet heart valves in closing phase using the finite strip method.
    Mohammadi H; Ahmadian MT; Wan WK
    Med Eng Phys; 2006 Mar; 28(2):122-33. PubMed ID: 15946890
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of blood rheological models for physiological flow simulation.
    Neofytou P
    Biorheology; 2004; 41(6):693-714. PubMed ID: 15851845
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Flow dynamics in anatomical models of abdominal aortic aneurysms: computational analysis of pulsatile flow.
    Finol EA; Amon CH
    Acta Cient Venez; 2003; 54(1):43-9. PubMed ID: 14515766
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Respiratory flow in obstructed airways.
    Yang XL; Liu Y; Luo HY
    J Biomech; 2006; 39(15):2743-51. PubMed ID: 16300771
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simulation of unsteady blood flows in a patient-specific compliant pulmonary artery with a highly parallel monolithically coupled fluid-structure interaction algorithm.
    Kong F; Kheyfets V; Finol E; Cai XC
    Int J Numer Method Biomed Eng; 2019 Jul; 35(7):e3208. PubMed ID: 30989794
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomedical simulation of heat transfer in a human heart.
    Sterk M; Trobec R
    J Chem Inf Model; 2005; 45(6):1558-63. PubMed ID: 16309254
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A verified and validated moving domain computational fluid dynamics solver with applications to cardiovascular flows.
    Kjeldsberg HA; Sundnes J; Valen-Sendstad K
    Int J Numer Method Biomed Eng; 2023 Jun; 39(6):e3703. PubMed ID: 37020156
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Theoretical approach to blood ejection from the human left ventricle.
    Peng Y; Wu S; Geng S; Liepsch D; Liao D; Qiao A; Zeng Y
    Biorheology; 2005; 42(4):271-81. PubMed ID: 16227655
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of inlet velocity profile on the bifurcation COPD airway flow.
    Yang XL; Liu Y; So RM; Yang JM
    Comput Biol Med; 2006 Feb; 36(2):181-94. PubMed ID: 16389077
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational simulations of the total cavo-pulmonary connection: insights in optimizing numerical solutions.
    DeGroff C; Birnbaum B; Shandas R; Orlando W; Hertzberg J
    Med Eng Phys; 2005 Mar; 27(2):135-46. PubMed ID: 15642509
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simulations of photoacoustic wave propagation using a finite-difference time-domain method with Berenger's perfectly matched layers.
    Sheu YL; Li PC
    J Acoust Soc Am; 2008 Dec; 124(6):3471-80. PubMed ID: 19206776
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The challenges of imaging based computational fluid dynamics.
    Anayiotos A; Cheng G; Ito Y; Gray J; Agarwal R
    Stud Health Technol Inform; 2004; 103():225-32. PubMed ID: 15747925
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Computational modeling of multicellular constructs with the material point method.
    Guilkey JE; Hoying JB; Weiss JA
    J Biomech; 2006; 39(11):2074-86. PubMed ID: 16095601
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.
    Bhattacharya A; Kesarkar T
    Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.
    Pau GS; Almgren AS; Bell JB; Lijewski MJ
    Philos Trans A Math Phys Eng Sci; 2009 Nov; 367(1907):4633-54. PubMed ID: 19840985
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A VERSATILE SHARP INTERFACE IMMERSED BOUNDARY METHOD FOR INCOMPRESSIBLE FLOWS WITH COMPLEX BOUNDARIES.
    Mittal R; Dong H; Bozkurttas M; Najjar FM; Vargas A; von Loebbecke A
    J Comput Phys; 2008; 227(10):4825-4852. PubMed ID: 20216919
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A high-order local time stepping finite volume solver for one-dimensional blood flow simulations: application to the ADAN model.
    Müller LO; Blanco PJ; Watanabe SM; Feijóo RA
    Int J Numer Method Biomed Eng; 2016 Oct; 32(10):. PubMed ID: 26695621
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A parallel non-nested two-level domain decomposition method for simulating blood flows in cerebral artery of stroke patient.
    Chen R; Wu B; Cheng Z; Shiu WS; Liu J; Liu L; Wang Y; Wang X; Cai XC
    Int J Numer Method Biomed Eng; 2020 Nov; 36(11):e3392. PubMed ID: 32783371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.