These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12122256)

  • 61. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows.
    Li Z; Lai MC
    East Asian J Applied Math; 2011 Jan; 1(2):155-171. PubMed ID: 23795308
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A novel multiblock immersed boundary method for large eddy simulation of complex arterial hemodynamics.
    Anupindi K; Delorme Y; Shetty DA; Frankel SH
    J Comput Phys; 2013 Dec; 254():. PubMed ID: 24179251
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A parallel PCG solver for MODFLOW.
    Dong Y; Li G
    Ground Water; 2009; 47(6):845-50. PubMed ID: 19563427
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Numerics made easy: solving the Navier-Stokes equation for arbitrary channel cross-sections using Microsoft Excel.
    Richter C; Kotz F; Giselbrecht S; Helmer D; Rapp BE
    Biomed Microdevices; 2016 Jun; 18(3):52. PubMed ID: 27233665
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Numerical analysis of electrical defibrillation. The parallel approach.
    Ng KT; Hutchinson SA; Gao S
    J Electrocardiol; 1995; 28 Suppl():15-20. PubMed ID: 8656104
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A Newton-Krylov method with an approximate analytical Jacobian for implicit solution of Navier-Stokes equations on staggered overset-curvilinear grids with immersed boundaries.
    Asgharzadeh H; Borazjani I
    J Comput Phys; 2017 Feb; 331():227-256. PubMed ID: 28042172
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Arterial bends: the development and decay of helical flows.
    Blyth MG; Mestel AJ; Zabielski L
    Biorheology; 2002; 39(3-4):345-50. PubMed ID: 12122251
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Diffuse-interface immersed-boundary framework for conjugate-heat-transfer problems.
    Kumar M; Natarajan G
    Phys Rev E; 2019 May; 99(5-1):053304. PubMed ID: 31212515
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions.
    Li Z; Xiao L; Cai Q; Zhao H; Luo R
    J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Supersonic turbulent flow simulation using a scalable parallel modal discontinuous Galerkin numerical method.
    Houba T; Dasgupta A; Gopalakrishnan S; Gosse R; Roy S
    Sci Rep; 2019 Oct; 9(1):14442. PubMed ID: 31594959
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A highly parallel simulation of patient-specific hepatic flows.
    Lin Z; Chen R; Gao B; Qin S; Wu B; Liu J; Cai XC
    Int J Numer Method Biomed Eng; 2021 Jun; 37(6):e3451. PubMed ID: 33609008
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows.
    Borazjani I; Ge L; Le T; Sotiropoulos F
    Comput Fluids; 2013 Apr; 77():76-96. PubMed ID: 23833331
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Finite-volume WENO scheme for viscous compressible multicomponent flows.
    Coralic V; Colonius T
    J Comput Phys; 2014 Oct; 274():95-121. PubMed ID: 25110358
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Generalizations of incompressible and compressible Navier-Stokes equations to fractional time and multi-fractional space.
    Kavvas ML; Ercan A
    Sci Rep; 2022 Nov; 12(1):19337. PubMed ID: 36369242
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fully coupled fluid-electro-mechanical model of the human heart for supercomputers.
    Santiago A; Aguado-Sierra J; Zavala-Aké M; Doste-Beltran R; Gómez S; Arís R; Cajas JC; Casoni E; Vázquez M
    Int J Numer Method Biomed Eng; 2018 Dec; 34(12):e3140. PubMed ID: 30117302
    [TBL] [Abstract][Full Text] [Related]  

  • 76. High-order least-square-based finite-difference-finite-volume method for simulation of incompressible thermal flows on arbitrary grids.
    Liu YY; Zhang HW; Yang LM; Shu C
    Phys Rev E; 2019 Dec; 100(6-1):063308. PubMed ID: 31962409
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Hierarchical Grid Solver for Simulation of Flows of Complex Fluids.
    Castelo A; Afonso AM; De Souza Bezerra W
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578066
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Unstructured mesh methods for the solution of the unsteady compressible flow equations with moving boundary components.
    Hassan O; Morgan K; Weatherill N
    Philos Trans A Math Phys Eng Sci; 2007 Oct; 365(1859):2531-52. PubMed ID: 17519197
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Implementation of dual time-stepping strategy of the gas-kinetic scheme for unsteady flow simulations.
    Li J; Zhong C; Wang Y; Zhuo C
    Phys Rev E; 2017 May; 95(5-1):053307. PubMed ID: 28618527
    [TBL] [Abstract][Full Text] [Related]  

  • 80. GPU Optimization for High-Quality Kinetic Fluid Simulation.
    Chen Y; Li W; Fan R; Liu X
    IEEE Trans Vis Comput Graph; 2022 Sep; 28(9):3235-3251. PubMed ID: 33591918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.