These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 12123027)

  • 21. Self-degradation of tissue adhesive based on oxidized dextran and poly-L-lysine.
    Matsumura K; Nakajima N; Sugai H; Hyon SH
    Carbohydr Polym; 2014 Nov; 113():32-8. PubMed ID: 25256455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arginine functionalization of hydrogels for heparin binding--a supramolecular approach to developing a pro-angiogenic biomaterial.
    Gilmore L; Rimmer S; McArthur SL; Mittar S; Sun D; MacNeil S
    Biotechnol Bioeng; 2013 Jan; 110(1):296-317. PubMed ID: 22753043
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels.
    Ma M; Kuang Y; Gao Y; Zhang Y; Gao P; Xu B
    J Am Chem Soc; 2010 Mar; 132(8):2719-28. PubMed ID: 20131781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Converting drugs into gelators: supramolecular hydrogels from N-acetyl-L-cysteine and coinage-metal salts.
    Casuso P; Carrasco P; Loinaz I; Grande HJ; Odriozola I
    Org Biomol Chem; 2010 Dec; 8(23):5455-8. PubMed ID: 20882249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of molecular structure on the properties of naphthalene-dipeptide hydrogelators.
    Chen L; Revel S; Morris K; C Serpell L; Adams DJ
    Langmuir; 2010 Aug; 26(16):13466-71. PubMed ID: 20695592
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unusual salt stability in highly charged diblock co-polypeptide hydrogels.
    Nowak AP; Breedveld V; Pine DJ; Deming TJ
    J Am Chem Soc; 2003 Dec; 125(50):15666-70. PubMed ID: 14664616
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dipeptide and tripeptide conjugates as low-molecular-weight hydrogelators.
    Adams DJ
    Macromol Biosci; 2011 Feb; 11(2):160-73. PubMed ID: 21080382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feasibility of hydrogel fiducial markers for in vivo proton range verification using PET.
    Cho J; Campbell P; Wang M; Alqathami M; Mawlawi O; Kerr M; Cho SH
    Phys Med Biol; 2016 Mar; 61(5):2162-76. PubMed ID: 26907591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Head group modulated pH-responsive hydrogel of amino acid-based amphiphiles: entrapment and release of cytochrome c and vitamin B12.
    Shome A; Debnath S; Das PK
    Langmuir; 2008 Apr; 24(8):4280-8. PubMed ID: 18324868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing gelation ability for a library of dipeptide gelators.
    Awhida S; Draper ER; McDonald TO; Adams DJ
    J Colloid Interface Sci; 2015 Oct; 455():24-31. PubMed ID: 26047582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Short Oligopeptides for Biocompatible and Biodegradable Supramolecular Hydrogels.
    Restu WK; Nishida Y; Yamamoto S; Ishii J; Maruyama T
    Langmuir; 2018 Jul; 34(27):8065-8074. PubMed ID: 29897242
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrophobic End-Modulated Amino-Acid-Based Neutral Hydrogelators: Structure-Specific Inclusion of Carbon Nanomaterials.
    Choudhury P; Mandal D; Brahmachari S; Das PK
    Chemistry; 2016 Apr; 22(15):5160-72. PubMed ID: 26916229
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Establishing contact between cell-laden hydrogels and metallic implants with a biomimetic adhesive for cell therapy supported implants.
    Barthes J; Mutschler A; Dollinger C; Gaudinat G; Lavalle P; Le Houerou V; Brian McGuinness G; Engin Vrana N
    Biomed Mater; 2017 Dec; 13(1):015015. PubMed ID: 28855425
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combinatorial library of low molecular-weight organo- and hydrogelators based on glycosylated amino acid derivatives by solid-phase synthesis.
    Kiyonaka S; Shinkai S; Hamachi I
    Chemistry; 2003 Feb; 9(4):976-83. PubMed ID: 12584714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon quantum dot-based fluorescent vesicles and chiral hydrogels with biosurfactant and biocompatible small molecule.
    Sun X; Li G; Yin Y; Zhang Y; Li H
    Soft Matter; 2018 Aug; 14(34):6983-6993. PubMed ID: 29972201
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Orthogonal self-assembly of low molecular weight hydrogelators and surfactants.
    Heeres A; van der Pol C; Stuart M; Friggeri A; Feringa BL; van Esch J
    J Am Chem Soc; 2003 Nov; 125(47):14252-3. PubMed ID: 14624554
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heparin-based hydrogels with tunable sulfation & degradation for anti-inflammatory small molecule delivery.
    Peng Y; Tellier LE; Temenoff JS
    Biomater Sci; 2016 Aug; 4(9):1371-80. PubMed ID: 27447003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and properties of low molecular weight amphiphilic peptide hydrogelators.
    Mitra RN; Das D; Roy S; Das PK
    J Phys Chem B; 2007 Dec; 111(51):14107-13. PubMed ID: 18052148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. l-Lysine-based supramolecular hydrogels containing various inorganic ions.
    Suzuki M; Yumoto M; Shirai H; Hanabusa K
    Org Biomol Chem; 2005 Aug; 3(16):3073-8. PubMed ID: 16186942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arginine-glycine-aspartic acid modified rosette nanotube-hydrogel composites for bone tissue engineering.
    Zhang L; Rakotondradany F; Myles AJ; Fenniri H; Webster TJ
    Biomaterials; 2009 Mar; 30(7):1309-20. PubMed ID: 19073342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.