These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 12123042)

  • 1. The rational design of novel chiral oxovanadium(IV) complexes for highly enantioselective oxidative coupling of 2-naphthols.
    Luo Z; Liu Q; Gong L; Cui X; Mi A; Jiang Y
    Chem Commun (Camb); 2002 Apr; (8):914-5. PubMed ID: 12123042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly enantioselective oxidative couplings of 2-naphthols catalyzed by chiral bimetallic oxovanadium complexes with either oxygen or air as oxidant.
    Guo QX; Wu ZJ; Luo ZB; Liu QZ; Ye JL; Luo SW; Cun LF; Gong LZ
    J Am Chem Soc; 2007 Nov; 129(45):13927-38. PubMed ID: 17956093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Synthesis and application of novel biaryl compounds with axial chirality as catalysts in enantioselective reactions].
    Nakajima M
    Yakugaku Zasshi; 2000 Jan; 120(1):68-75. PubMed ID: 10655783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic asymmetric oxidative couplings of 2-naphthols by tridentate N-ketopinidene-based vanadyl dicarboxylates.
    Barhate NB; Chen CT
    Org Lett; 2002 Jul; 4(15):2529-32. PubMed ID: 12123368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective Iron/Bisquinolyldiamine Ligand-Catalyzed Oxidative Coupling Reaction of 2-Naphthols.
    Wu LY; Usman M; Liu WB
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32075144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organocatalytic enantioselective Friedel-crafts reactions of 1-naphthols with aldimines.
    Liu G; Zhang S; Li H; Zhang T; Wang W
    Org Lett; 2011 Mar; 13(5):828-31. PubMed ID: 21235250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of dinuclear vanadium catalysts for enantioselective coupling of 2-naphthols via a dual activation mechanism.
    Takizawa S
    Chem Pharm Bull (Tokyo); 2009 Nov; 57(11):1179-88. PubMed ID: 19881264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of novel BINOL-derived chiral bisphosphorus ligands and their application in catalytic asymmetric hydrogenation.
    Zhou YG; Zhang X
    Chem Commun (Camb); 2002 May; (10):1124-5. PubMed ID: 12122696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective synthesis of binaphthyl polymers using chiral asymmetric phenolic coupling catalysts: oxidative coupling and tandem glaser/oxidative coupling.
    Morgan BJ; Xie X; Phuan PW; Kozlowski MC
    J Org Chem; 2007 Aug; 72(16):6171-82. PubMed ID: 17629337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Development of the Direct Transformations of Aromatic C-H Bonds Using a Heterogeneous Metal Catalyst].
    Matsumoto K
    Yakugaku Zasshi; 2018; 138(11):1353-1361. PubMed ID: 30381643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron-catalyzed dioxygen-driven C-C bond formation: oxidative dearomatization of 2-naphthols with construction of a chiral quaternary stereocenter.
    Oguma T; Katsuki T
    J Am Chem Soc; 2012 Dec; 134(49):20017-20. PubMed ID: 23181470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct access to highly substituted 1-naphthols through palladium-catalyzed oxidative annulation of benzoylacetates and internal alkynes.
    Peng S; Wang L; Wang J
    Chemistry; 2013 Sep; 19(40):13322-7. PubMed ID: 24078414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organocatalytic asymmetric Friedel-Crafts alkylation/cyclization cascade reaction of 1-naphthols and alpha,beta-unsaturated aldehydes: an enantioselective synthesis of chromanes and dihydrobenzopyranes.
    Hong L; Wang L; Sun W; Wong K; Wang R
    J Org Chem; 2009 Sep; 74(17):6881-4. PubMed ID: 19663397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioenriched synthesis of C1-symmetric BINOLs: iron-catalyzed cross-coupling of 2-naphthols and some mechanistic insight.
    Egami H; Matsumoto K; Oguma T; Kunisu T; Katsuki T
    J Am Chem Soc; 2010 Oct; 132(39):13633-5. PubMed ID: 20831174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic asymmetric coupling of 2-naphthols by chiral tridentate oxovanadium (IV) complexes.
    Hon SW; Li CH; Kuo JH; Barhate NB; Liu YH; Wang Y; Chen CT
    Org Lett; 2001 Mar; 3(6):869-72. PubMed ID: 11263903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural influence of chiral tertiary aminonaphthol ligands on the asymmetric phenyl transfer to aromatic aldehydes.
    Wei H; Yin L; Luo H; Li X; Chan AS
    Chirality; 2011 Mar; 23(3):222-7. PubMed ID: 20882598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct enantioselective aldol-Tishchenko reaction catalyzed by chiral lithium diphenylbinaphtholate.
    Ichibakase T; Nakajima M
    Org Lett; 2011 Apr; 13(7):1579-81. PubMed ID: 21355567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-substituted BINOL Schiff bases and their reductive products for catalytic asymmetric addition of diethylzinc to aldehydes.
    Liu B; Dong ZB; Fang C; Song HB; Li JS
    Chirality; 2008 Jul; 20(7):828-32. PubMed ID: 18338388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron-catalyzed asymmetric aerobic oxidation: oxidative coupling of 2-naphthols.
    Egami H; Katsuki T
    J Am Chem Soc; 2009 May; 131(17):6082-3. PubMed ID: 19361160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General approach for the synthesis of chiral perylenequinones via catalytic enantioselective oxidative biaryl coupling.
    Mulrooney CA; Li X; DiVirgilio ES; Kozlowski MC
    J Am Chem Soc; 2003 Jun; 125(23):6856-7. PubMed ID: 12783524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.