BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 12123042)

  • 1. The rational design of novel chiral oxovanadium(IV) complexes for highly enantioselective oxidative coupling of 2-naphthols.
    Luo Z; Liu Q; Gong L; Cui X; Mi A; Jiang Y
    Chem Commun (Camb); 2002 Apr; (8):914-5. PubMed ID: 12123042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly enantioselective oxidative couplings of 2-naphthols catalyzed by chiral bimetallic oxovanadium complexes with either oxygen or air as oxidant.
    Guo QX; Wu ZJ; Luo ZB; Liu QZ; Ye JL; Luo SW; Cun LF; Gong LZ
    J Am Chem Soc; 2007 Nov; 129(45):13927-38. PubMed ID: 17956093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Synthesis and application of novel biaryl compounds with axial chirality as catalysts in enantioselective reactions].
    Nakajima M
    Yakugaku Zasshi; 2000 Jan; 120(1):68-75. PubMed ID: 10655783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic asymmetric oxidative couplings of 2-naphthols by tridentate N-ketopinidene-based vanadyl dicarboxylates.
    Barhate NB; Chen CT
    Org Lett; 2002 Jul; 4(15):2529-32. PubMed ID: 12123368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective Iron/Bisquinolyldiamine Ligand-Catalyzed Oxidative Coupling Reaction of 2-Naphthols.
    Wu LY; Usman M; Liu WB
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32075144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organocatalytic enantioselective Friedel-crafts reactions of 1-naphthols with aldimines.
    Liu G; Zhang S; Li H; Zhang T; Wang W
    Org Lett; 2011 Mar; 13(5):828-31. PubMed ID: 21235250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of dinuclear vanadium catalysts for enantioselective coupling of 2-naphthols via a dual activation mechanism.
    Takizawa S
    Chem Pharm Bull (Tokyo); 2009 Nov; 57(11):1179-88. PubMed ID: 19881264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of novel BINOL-derived chiral bisphosphorus ligands and their application in catalytic asymmetric hydrogenation.
    Zhou YG; Zhang X
    Chem Commun (Camb); 2002 May; (10):1124-5. PubMed ID: 12122696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective synthesis of binaphthyl polymers using chiral asymmetric phenolic coupling catalysts: oxidative coupling and tandem glaser/oxidative coupling.
    Morgan BJ; Xie X; Phuan PW; Kozlowski MC
    J Org Chem; 2007 Aug; 72(16):6171-82. PubMed ID: 17629337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Development of the Direct Transformations of Aromatic C-H Bonds Using a Heterogeneous Metal Catalyst].
    Matsumoto K
    Yakugaku Zasshi; 2018; 138(11):1353-1361. PubMed ID: 30381643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron-catalyzed dioxygen-driven C-C bond formation: oxidative dearomatization of 2-naphthols with construction of a chiral quaternary stereocenter.
    Oguma T; Katsuki T
    J Am Chem Soc; 2012 Dec; 134(49):20017-20. PubMed ID: 23181470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct access to highly substituted 1-naphthols through palladium-catalyzed oxidative annulation of benzoylacetates and internal alkynes.
    Peng S; Wang L; Wang J
    Chemistry; 2013 Sep; 19(40):13322-7. PubMed ID: 24078414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organocatalytic asymmetric Friedel-Crafts alkylation/cyclization cascade reaction of 1-naphthols and alpha,beta-unsaturated aldehydes: an enantioselective synthesis of chromanes and dihydrobenzopyranes.
    Hong L; Wang L; Sun W; Wong K; Wang R
    J Org Chem; 2009 Sep; 74(17):6881-4. PubMed ID: 19663397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioenriched synthesis of C1-symmetric BINOLs: iron-catalyzed cross-coupling of 2-naphthols and some mechanistic insight.
    Egami H; Matsumoto K; Oguma T; Kunisu T; Katsuki T
    J Am Chem Soc; 2010 Oct; 132(39):13633-5. PubMed ID: 20831174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic asymmetric coupling of 2-naphthols by chiral tridentate oxovanadium (IV) complexes.
    Hon SW; Li CH; Kuo JH; Barhate NB; Liu YH; Wang Y; Chen CT
    Org Lett; 2001 Mar; 3(6):869-72. PubMed ID: 11263903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural influence of chiral tertiary aminonaphthol ligands on the asymmetric phenyl transfer to aromatic aldehydes.
    Wei H; Yin L; Luo H; Li X; Chan AS
    Chirality; 2011 Mar; 23(3):222-7. PubMed ID: 20882598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct enantioselective aldol-Tishchenko reaction catalyzed by chiral lithium diphenylbinaphtholate.
    Ichibakase T; Nakajima M
    Org Lett; 2011 Apr; 13(7):1579-81. PubMed ID: 21355567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-substituted BINOL Schiff bases and their reductive products for catalytic asymmetric addition of diethylzinc to aldehydes.
    Liu B; Dong ZB; Fang C; Song HB; Li JS
    Chirality; 2008 Jul; 20(7):828-32. PubMed ID: 18338388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron-catalyzed asymmetric aerobic oxidation: oxidative coupling of 2-naphthols.
    Egami H; Katsuki T
    J Am Chem Soc; 2009 May; 131(17):6082-3. PubMed ID: 19361160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General approach for the synthesis of chiral perylenequinones via catalytic enantioselective oxidative biaryl coupling.
    Mulrooney CA; Li X; DiVirgilio ES; Kozlowski MC
    J Am Chem Soc; 2003 Jun; 125(23):6856-7. PubMed ID: 12783524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.