BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 12123456)

  • 21. A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6.
    Liang H; Gaber RF
    Mol Biol Cell; 1996 Dec; 7(12):1953-66. PubMed ID: 8970157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deletion of the phosphoglucose isomerase structural gene makes growth and sporulation glucose dependent in Saccharomyces cerevisiae.
    Aguilera A
    Mol Gen Genet; 1986 Aug; 204(2):310-6. PubMed ID: 3020369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of the SNF1 signaling pathway in the growth of Saccharomyces cerevisiae in different carbon and nitrogen sources.
    Correa-Romero BF; Olivares-Marin IK; Regalado-Gonzalez C; Nava GM; Madrigal-Perez LA
    Braz J Microbiol; 2023 Jun; 54(2):1083-1091. PubMed ID: 36972016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8.
    Young ET; Dombek KM; Tachibana C; Ideker T
    J Biol Chem; 2003 Jul; 278(28):26146-58. PubMed ID: 12676948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Roles of the Snf1-activating kinases during nitrogen limitation and pseudohyphal differentiation in Saccharomyces cerevisiae.
    Orlova M; Ozcetin H; Barrett L; Kuchin S
    Eukaryot Cell; 2010 Jan; 9(1):208-14. PubMed ID: 19880754
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic and carbon source regulation of phosphorylation of Sip1p, a Snf1p-associated protein involved in carbon response in Saccharomyces cerevisiae.
    Long RM; Hopper JE
    Yeast; 1995 Mar; 11(3):233-46. PubMed ID: 7785324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New roles for CDC25 in growth control, galactose regulation and cellular differentiation in Saccharomyces cerevisiae.
    Folch-Mallol JL; Martínez LM; Casas SJ; Yang R; Martínez-Anaya C; López L; Hernández A; Nieto-Sotelo J
    Microbiology (Reading); 2004 Sep; 150(Pt 9):2865-2879. PubMed ID: 15347746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The snf1 gene of Ustilago maydis acts as a dual regulator of cell wall degrading enzymes.
    Nadal M; Garcia-Pedrajas MD; Gold SE
    Phytopathology; 2010 Dec; 100(12):1364-72. PubMed ID: 21062173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Yak1 protein kinase lies at the center of a regulatory cascade affecting adhesive growth and stress resistance in Saccharomyces cerevisiae.
    Malcher M; Schladebeck S; Mösch HU
    Genetics; 2011 Mar; 187(3):717-30. PubMed ID: 21149646
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae.
    Zaragoza O; Vincent O; Gancedo JM
    Biochem J; 2001 Oct; 359(Pt 1):193-201. PubMed ID: 11563983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A role for the non-phosphorylated form of yeast Snf1: tolerance to toxic cations and activation of potassium transport.
    Portillo F; Mulet JM; Serrano R
    FEBS Lett; 2005 Jan; 579(2):512-6. PubMed ID: 15642368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase.
    Hedbacker K; Carlson M
    Eukaryot Cell; 2006 Dec; 5(12):1950-6. PubMed ID: 17071825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GABA induction of the Saccharomyces cerevisiae UGA4 gene depends on the quality of the carbon source: role of the key transcription factors acting in this process.
    Levi CE; Cardillo SB; Bertotti S; Ríos C; Correa García S; Moretti MB
    Biochem Biophys Res Commun; 2012 May; 421(3):572-7. PubMed ID: 22525679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae.
    Lorenz MC; Pan X; Harashima T; Cardenas ME; Xue Y; Hirsch JP; Heitman J
    Genetics; 2000 Feb; 154(2):609-22. PubMed ID: 10655215
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae.
    Sierkstra LN; Silljé HH; Verbakel JM; Verrips CT
    Eur J Biochem; 1993 May; 214(1):121-7. PubMed ID: 8508783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glucose repression in Saccharomyces cerevisiae.
    Kayikci Ö; Nielsen J
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26205245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulatory mechanism for expression of GPX1 in response to glucose starvation and Ca in Saccharomyces cerevisiae: involvement of Snf1 and Ras/cAMP pathway in Ca signaling.
    Ohdate T; Izawa S; Kita K; Inoue Y
    Genes Cells; 2010 Jan; 15(1):59-75. PubMed ID: 20002498
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New mutations of Saccharomyces cerevisiae that partially relieve both glucose and galactose repression activate the protein kinase Snf1.
    Rodríguez C; Sanz P; Gancedo C
    FEMS Yeast Res; 2003 Mar; 3(1):77-84. PubMed ID: 12702249
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Saccharomyces cerevisiae JEN1 promoter activity is inversely related to concentration of repressing sugar.
    Chambers P; Issaka A; Palecek SP
    Appl Environ Microbiol; 2004 Jan; 70(1):8-17. PubMed ID: 14711620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The repressor Rgt1 and the cAMP-dependent protein kinases control the expression of the SUC2 gene in Saccharomyces cerevisiae.
    Gancedo JM; Flores CL; Gancedo C
    Biochim Biophys Acta; 2015 Jul; 1850(7):1362-7. PubMed ID: 25810078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.