BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 12123456)

  • 41. Snf1-dependent and Snf1-independent pathways of constitutive ADH2 expression in Saccharomyces cerevisiae.
    Voronkova V; Kacherovsky N; Tachibana C; Yu D; Young ET
    Genetics; 2006 Apr; 172(4):2123-38. PubMed ID: 16415371
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combinatorial control by the protein kinases PKA, PHO85 and SNF1 of transcriptional induction of the Saccharomyces cerevisiae GSY2 gene at the diauxic shift.
    Enjalbert B; Parrou JL; Teste MA; François J
    Mol Genet Genomics; 2004 Jul; 271(6):697-708. PubMed ID: 15221454
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interactions between cAMP-dependent and SNF1 protein kinases in the control of glycogen accumulation in Saccharomyces cerevisiae.
    Hardy TA; Huang D; Roach PJ
    J Biol Chem; 1994 Nov; 269(45):27907-13. PubMed ID: 7961723
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Crosstalk between cAMP-PKA and MAP kinase pathways is a key regulatory design necessary to regulate FLO11 expression.
    Sengupta N; Vinod PK; Venkatesh KV
    Biophys Chem; 2007 Jan; 125(1):59-71. PubMed ID: 16863676
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism.
    Vincent O; Townley R; Kuchin S; Carlson M
    Genes Dev; 2001 May; 15(9):1104-14. PubMed ID: 11331606
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Snf1/AMPK promotes S-phase entrance by controlling CLB5 transcription in budding yeast.
    Pessina S; Tsiarentsyeva V; Busnelli S; Vanoni M; Alberghina L; Coccetti P
    Cell Cycle; 2010 Jun; 9(11):2189-200. PubMed ID: 20505334
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The mammalian AMP-activated protein kinase complex mediates glucose regulation of gene expression in the yeast Saccharomyces cerevisiae.
    Ye T; Bendrioua L; Carmena D; García-Salcedo R; Dahl P; Carling D; Hohmann S
    FEBS Lett; 2014 Jun; 588(12):2070-7. PubMed ID: 24815694
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Snf1-Dependent Transcription Confers Glucose-Induced Decay upon the mRNA Product.
    Braun KA; Dombek KM; Young ET
    Mol Cell Biol; 2016 Feb; 36(4):628-44. PubMed ID: 26667037
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Posttranscriptional regulation of FLO11 upon amino acid starvation in Saccharomyces cerevisiae.
    Fischer C; Valerius O; Rupprecht H; Dumkow M; Krappmann S; Braus GH
    FEMS Yeast Res; 2008 Mar; 8(2):225-36. PubMed ID: 17999676
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Carbon Catabolite Repression in Yeast is Not Limited to Glucose.
    Simpson-Lavy K; Kupiec M
    Sci Rep; 2019 Apr; 9(1):6491. PubMed ID: 31019232
    [TBL] [Abstract][Full Text] [Related]  

  • 51. FLO11 mediated filamentous growth of the yeast Saccharomyces cerevisiae depends on the expression of the ribosomal RPS26 genes.
    Strittmatter AW; Fischer C; Kleinschmidt M; Braus GH
    Mol Genet Genomics; 2006 Aug; 276(2):113-25. PubMed ID: 16721598
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physiological characterization of glucose repression in the strains with SNF1 and SNF4 genes deleted.
    Usaite R; Nielsen J; Olsson L
    J Biotechnol; 2008 Jan; 133(1):73-81. PubMed ID: 17949842
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Snf1/AMPK affects cell wall integrity through regulating the transcription of cell wall as sembly-related genesin Saccharomyces cerevisiae].
    Zhang P; Zhao Q; Wei D; Yang J; Zhu X; Zhu X
    Wei Sheng Wu Xue Bao; 2016 Jul; 56(7):1132-40. PubMed ID: 29733174
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dosage-dependent modulation of glucose repression by MSN3 (STD1) in Saccharomyces cerevisiae.
    Hubbard EJ; Jiang R; Carlson M
    Mol Cell Biol; 1994 Mar; 14(3):1972-8. PubMed ID: 8114728
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cyclic AMP-dependent protein kinase regulates the subcellular localization of Snf1-Sip1 protein kinase.
    Hedbacker K; Townley R; Carlson M
    Mol Cell Biol; 2004 Mar; 24(5):1836-43. PubMed ID: 14966266
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sip2, an N-myristoylated beta subunit of Snf1 kinase, regulates aging in Saccharomyces cerevisiae by affecting cellular histone kinase activity, recombination at rDNA loci, and silencing.
    Lin SS; Manchester JK; Gordon JI
    J Biol Chem; 2003 Apr; 278(15):13390-7. PubMed ID: 12562756
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Snf1/AMPK promotes SBF and MBF-dependent transcription in budding yeast.
    Busnelli S; Tripodi F; Nicastro R; Cirulli C; Tedeschi G; Pagliarin R; Alberghina L; Coccetti P
    Biochim Biophys Acta; 2013 Dec; 1833(12):3254-3264. PubMed ID: 24084603
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mutations suppressing the effects of a deletion of the phosphoglucose isomerase gene PGI1 in Saccharomyces cerevisiae.
    Aguilera A
    Curr Genet; 1987; 11(6-7):429-34. PubMed ID: 3329972
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio.
    Wilson WA; Hawley SA; Hardie DG
    Curr Biol; 1996 Nov; 6(11):1426-34. PubMed ID: 8939604
    [TBL] [Abstract][Full Text] [Related]  

  • 60. IMP2, a gene involved in the expression of glucose-repressible genes in Saccharomyces cerevisiae.
    Lodi T; Goffrini P; Ferrero I; Donnini C
    Microbiology (Reading); 1995 Sep; 141 ( Pt 9)():2201-9. PubMed ID: 7496532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.