BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 12123611)

  • 1. Depolarization drives beta-Catenin into neuronal spines promoting changes in synaptic structure and function.
    Murase S; Mosser E; Schuman EM
    Neuron; 2002 Jul; 35(1):91-105. PubMed ID: 12123611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The actin-binding protein profilin I is localized at synaptic sites in an activity-regulated manner.
    Neuhoff H; Sassoè-Pognetto M; Panzanelli P; Maas C; Witke W; Kneussel M
    Eur J Neurosci; 2005 Jan; 21(1):15-25. PubMed ID: 15654839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadherin regulates dendritic spine morphogenesis.
    Togashi H; Abe K; Mizoguchi A; Takaoka K; Chisaka O; Takeichi M
    Neuron; 2002 Jul; 35(1):77-89. PubMed ID: 12123610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadherins and synaptic plasticity: activity-dependent cyclin-dependent kinase 5 regulation of synaptic beta-catenin-cadherin interactions.
    Schuman EM; Murase S
    Philos Trans R Soc Lond B Biol Sci; 2003 Apr; 358(1432):749-56. PubMed ID: 12740122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate-induced delta-catenin redistribution and dissociation from postsynaptic receptor complexes.
    Jones SB; Lanford GW; Chen YH; Morabito M; Kim K; Lu Q
    Neuroscience; 2002; 115(4):1009-21. PubMed ID: 12453475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses.
    Dunah AW; Hueske E; Wyszynski M; Hoogenraad CC; Jaworski J; Pak DT; Simonetta A; Liu G; Sheng M
    Nat Neurosci; 2005 Apr; 8(4):458-67. PubMed ID: 15750591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporally distinct demands for classic cadherins in synapse formation and maturation.
    Bozdagi O; Valcin M; Poskanzer K; Tanaka H; Benson DL
    Mol Cell Neurosci; 2004 Dec; 27(4):509-21. PubMed ID: 15555928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of dendritic spine morphogenesis and synaptic transmission by activity-inducible protein Homer1a.
    Sala C; Futai K; Yamamoto K; Worley PF; Hayashi Y; Sheng M
    J Neurosci; 2003 Jul; 23(15):6327-37. PubMed ID: 12867517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drebrin-dependent actin clustering in dendritic filopodia governs synaptic targeting of postsynaptic density-95 and dendritic spine morphogenesis.
    Takahashi H; Sekino Y; Tanaka S; Mizui T; Kishi S; Shirao T
    J Neurosci; 2003 Jul; 23(16):6586-95. PubMed ID: 12878700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-catenin is critical for dendritic morphogenesis.
    Yu X; Malenka RC
    Nat Neurosci; 2003 Nov; 6(11):1169-77. PubMed ID: 14528308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic scaffolding molecule is involved in the synaptic clustering of neuroligin.
    Iida J; Hirabayashi S; Sato Y; Hata Y
    Mol Cell Neurosci; 2004 Dec; 27(4):497-508. PubMed ID: 15555927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transsynaptic signaling by activity-dependent cleavage of neuroligin-1.
    Peixoto RT; Kunz PA; Kwon H; Mabb AM; Sabatini BL; Philpot BD; Ehlers MD
    Neuron; 2012 Oct; 76(2):396-409. PubMed ID: 23083741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin.
    Balsamo J; Leung T; Ernst H; Zanin MK; Hoffman S; Lilien J
    J Cell Biol; 1996 Aug; 134(3):801-13. PubMed ID: 8707857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular modification of N-cadherin in response to synaptic activity.
    Tanaka H; Shan W; Phillips GR; Arndt K; Bozdagi O; Shapiro L; Huntley GW; Benson DL; Colman DR
    Neuron; 2000 Jan; 25(1):93-107. PubMed ID: 10707975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cadherins communicate structural plasticity of presynaptic and postsynaptic terminals.
    Goda Y
    Neuron; 2002 Jul; 35(1):1-3. PubMed ID: 12123599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of dendritic spines and synaptic contacts is controlled by alpha N-catenin.
    Abe K; Chisaka O; Van Roy F; Takeichi M
    Nat Neurosci; 2004 Apr; 7(4):357-63. PubMed ID: 15034585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spine formation and correlated assembly of presynaptic and postsynaptic molecules.
    Okabe S; Miwa A; Okado H
    J Neurosci; 2001 Aug; 21(16):6105-14. PubMed ID: 11487634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronized formation and remodeling of postsynaptic densities: long-term visualization of hippocampal neurons expressing postsynaptic density proteins tagged with green fluorescent protein.
    Ebihara T; Kawabata I; Usui S; Sobue K; Okabe S
    J Neurosci; 2003 Mar; 23(6):2170-81. PubMed ID: 12657676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of synaptic scaffolding molecule and Beta -catenin.
    Nishimura W; Yao I; Iida J; Tanaka N; Hata Y
    J Neurosci; 2002 Feb; 22(3):757-65. PubMed ID: 11826105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postsynaptic density 95 (PSD-95) serine 561 phosphorylation regulates a conformational switch and bidirectional dendritic spine structural plasticity.
    Wu Q; Sun M; Bernard LP; Zhang H
    J Biol Chem; 2017 Sep; 292(39):16150-16160. PubMed ID: 28790172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.