These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. Moon CD; Zhang XX; Matthijs S; Schäfer M; Budzikiewicz H; Rainey PB BMC Microbiol; 2008 Jan; 8():7. PubMed ID: 18194565 [TBL] [Abstract][Full Text] [Related]
43. High-molecular-mass, iron-repressed cytoplasmic proteins in fluorescent Pseudomonas: potential peptide-synthetases for pyoverdine biosynthesis. Georges C; Meyer JM FEMS Microbiol Lett; 1995 Oct; 132(1-2):9-15. PubMed ID: 7590169 [TBL] [Abstract][Full Text] [Related]
44. The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway. Matthijs S; Baysse C; Koedam N; Tehrani KA; Verheyden L; Budzikiewicz H; Schäfer M; Hoorelbeke B; Meyer JM; De Greve H; Cornelis P Mol Microbiol; 2004 Apr; 52(2):371-84. PubMed ID: 15066027 [TBL] [Abstract][Full Text] [Related]
45. Subcellular localization of the pyoverdine biogenesis machinery of Pseudomonas aeruginosa: a membrane-associated "siderosome". Imperi F; Visca P FEBS Lett; 2013 Nov; 587(21):3387-91. PubMed ID: 24042050 [TBL] [Abstract][Full Text] [Related]
46. FpvA bound to non-cognate pyoverdines: molecular basis of siderophore recognition by an iron transporter. Greenwald J; Nader M; Celia H; Gruffaz C; Geoffroy V; Meyer JM; Schalk IJ; Pattus F Mol Microbiol; 2009 Jun; 72(5):1246-59. PubMed ID: 19504741 [TBL] [Abstract][Full Text] [Related]
47. Siderochromes from Pseudomonas fluorescens. II. Structural homology as revealed by NMR spectroscopy. Philson SB; Llinás M J Biol Chem; 1982 Jul; 257(14):8086-90. PubMed ID: 6211451 [TBL] [Abstract][Full Text] [Related]
48. Multiple conformations of the metal-bound pyoverdine PvdI, a siderophore of Pseudomonas aeruginosa: a nuclear magnetic resonance study. Wasielewski E; Tzou DL; Dillmann B; Czaplicki J; Abdallah MA; Atkinson RA; Kieffer B Biochemistry; 2008 Mar; 47(11):3397-406. PubMed ID: 18298082 [TBL] [Abstract][Full Text] [Related]
49. Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Meyer JM Arch Microbiol; 2000 Sep; 174(3):135-42. PubMed ID: 11041343 [TBL] [Abstract][Full Text] [Related]
50. PvdRT-OpmQ and MdtABC-OpmB efflux systems are involved in pyoverdine secretion in Pseudomonas putida KT2440. Henríquez T; Stein NV; Jung H Environ Microbiol Rep; 2019 Apr; 11(2):98-106. PubMed ID: 30346656 [TBL] [Abstract][Full Text] [Related]
51. Characterization of the pyoverdines of Azotobacter vinelandii ATCC 12837 with regard to heterogeneity. Menhart N; Thariath A; Viswanatha T Biol Met; 1991; 4(4):223-32. PubMed ID: 1838001 [TBL] [Abstract][Full Text] [Related]
52. Physiological and molecular genetic evaluation of the dechlorination agent, pyridine-2,6-bis(monothiocarboxylic acid) (PDTC) as a secondary siderophore of Pseudomonas. Lewis TA; Leach L; Morales S; Austin PR; Hartwell HJ; Kaplan B; Forker C; Meyer JM Environ Microbiol; 2004 Feb; 6(2):159-69. PubMed ID: 14756880 [TBL] [Abstract][Full Text] [Related]
53. A comprehensive method to elucidate pyoverdines produced by fluorescent Pseudomonas spp. by UHPLC-HR-MS/MS. Rehm K; Vollenweider V; Kümmerli R; Bigler L Anal Bioanal Chem; 2022 Mar; 414(8):2671-2685. PubMed ID: 35084507 [TBL] [Abstract][Full Text] [Related]
54. Total substitution and partial modification of the set of non-ribosomal peptide synthetases clusters lead to pyoverdine diversity in the Graña-Miraglia L; Geney Higuita JL; Salazar JC; Guaya Iñiguez D; Alcolado León C; García-Angulo VA Front Microbiol; 2024; 15():1421749. PubMed ID: 39224222 [TBL] [Abstract][Full Text] [Related]
55. Evaluation of the interactions between the marine bacterium Pseudomonas fluorescens and the microalga Isochrysis galbana in simulated ballast tank environment. da Silva Câmara A; de Almeida Fernandes LD Arch Microbiol; 2019 Jan; 201(1):35-44. PubMed ID: 30187094 [TBL] [Abstract][Full Text] [Related]
56. Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdine biosynthesis. Stintzi A; Evans K; Meyer JM; Poole K FEMS Microbiol Lett; 1998 Sep; 166(2):341-5. PubMed ID: 9770291 [TBL] [Abstract][Full Text] [Related]
57. The pyoverdin of Pseudomonas fluorescens G173, a novel structural type accompanied by unexpected natural derivatives of the corresponding ferribactin. Fernández DU; Fuchs R; Schäfer M; Budzikiewicz H; Meyer JM Z Naturforsch C J Biosci; 2003; 58(1-2):1-10. PubMed ID: 12622218 [TBL] [Abstract][Full Text] [Related]
58. A combinatorial approach to the structure elucidation of a pyoverdine siderophore produced by a Pseudomonas putida isolate and the use of pyoverdine as a taxonomic marker for typing P. putida subspecies. Ye L; Ballet S; Hildebrand F; Laus G; Guillemyn K; Raes J; Matthijs S; Martins J; Cornelis P Biometals; 2013 Aug; 26(4):561-75. PubMed ID: 23877277 [TBL] [Abstract][Full Text] [Related]
59. Pyoverdine-mediated iron transport in Pseudomonas aeruginosa: involvement of a high-molecular-mass outer membrane protein. Poole K; Neshat S; Heinrichs D FEMS Microbiol Lett; 1991 Feb; 62(1):1-5. PubMed ID: 1903349 [TBL] [Abstract][Full Text] [Related]
60. PvdP is a tyrosinase that drives maturation of the pyoverdine chromophore in Pseudomonas aeruginosa. Nadal-Jimenez P; Koch G; Reis CR; Muntendam R; Raj H; Jeronimus-Stratingh CM; Cool RH; Quax WJ J Bacteriol; 2014 Jul; 196(14):2681-90. PubMed ID: 24816606 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]