These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12124265)

  • 1. Molecular dynamics simulations of the first steps of the reaction catalyzed by HIV-1 protease.
    Trylska J; Bała P; Geller M; Grochowski P
    Biophys J; 2002 Aug; 83(2):794-807. PubMed ID: 12124265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of hydrogen bonding in the enzymatic reaction catalyzed by HIV-1 protease.
    Trylska J; Grochowski P; McCammon JA
    Protein Sci; 2004 Feb; 13(2):513-28. PubMed ID: 14739332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Conformational changes in HIV-1 proteinase: effect of protonation of the active center on conformation of HIV-1 proteinase in water].
    Koval'skiĭ DB; Kanibolotskiĭ DS; Dubina VN; Korneliuk AI
    Ukr Biokhim Zh (1999); 2002; 74(6):135-8. PubMed ID: 12924029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling HIV protease flaps dynamics by Constant pH Molecular Dynamics simulations.
    Soares RO; Torres PHM; da Silva ML; Pascutti PG
    J Struct Biol; 2016 Aug; 195(2):216-226. PubMed ID: 27291071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition and catalytic mechanism of HIV-1 aspartic protease.
    Silva AM; Cachau RE; Sham HL; Erickson JW
    J Mol Biol; 1996 Jan; 255(2):321-46. PubMed ID: 8551523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray structure of HIV-1 protease in situ product complex.
    Bihani S; Das A; Prashar V; Ferrer JL; Hosur MV
    Proteins; 2009 Feb; 74(3):594-602. PubMed ID: 18704947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the S1/S1' substrate binding pocket geometry of HIV-1 protease with modified aspartic acid analogues.
    Short GF; Laikhter AL; Lodder M; Shayo Y; Arslan T; Hecht SM
    Biochemistry; 2000 Aug; 39(30):8768-81. PubMed ID: 10913288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of HIV-1 protease with peptide substrate.
    Harrison RW; Weber IT
    Protein Eng; 1994 Nov; 7(11):1353-63. PubMed ID: 7700867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the structure of HIV-1 protease complexed with a hexapeptide inhibitor. Part II: Molecular dynamic studies of the active site region.
    Geller M; Miller M; Swanson SM; Maizel J
    Proteins; 1997 Feb; 27(2):195-203. PubMed ID: 9061783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecular dynamics study of the structural stability of HIV-1 protease under physiological conditions: the role of Na+ ions in stabilizing the active site.
    Kovalskyy D; Dubyna V; Mark AE; Kornelyuk A
    Proteins; 2005 Feb; 58(2):450-8. PubMed ID: 15562519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.
    Prashar V; Bihani S; Das A; Ferrer JL; Hosur M
    PLoS One; 2009 Nov; 4(11):e7860. PubMed ID: 19924250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A combined quantum/classical molecular dynamics study of the catalytic mechanism of HIV protease.
    Liu H; Müller-Plathe F; van Gunsteren WF
    J Mol Biol; 1996 Aug; 261(3):454-69. PubMed ID: 8780786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study on the mechanism of a ring-opening reaction of oxirane by the active-site aspartic dyad of HIV-1 protease.
    Kóna J
    Org Biomol Chem; 2008 Jan; 6(2):359-65. PubMed ID: 18175006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio molecular dynamics-based assignment of the protonation state of pepstatin A/HIV-1 protease cleavage site.
    Piana S; Sebastiani D; Carloni P; Parrinello M
    J Am Chem Soc; 2001 Sep; 123(36):8730-7. PubMed ID: 11535077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and dynamical properties of different protonated states of mutant HIV-1 protease complexed with the saquinavir inhibitor studied by molecular dynamics simulations.
    Aruksakunwong O; Wittayanarakul K; Sompornpisut P; Sanghiran V; Parasuk V; Hannongbua S
    J Mol Graph Model; 2006 Nov; 25(3):324-32. PubMed ID: 16504560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-REMD simulations indicate that the catalytic aspartates of HIV-1 protease exist primarily in a monoprotonated state.
    McGee TD; Edwards J; Roitberg AE
    J Phys Chem B; 2014 Nov; 118(44):12577-85. PubMed ID: 25340507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computing the role of near attack conformations in an enzyme-catalyzed nucleophilic bimolecular reaction.
    Sadiq SK; Coveney PV
    J Chem Theory Comput; 2015 Jan; 11(1):316-24. PubMed ID: 26574229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyethylamine isostere of an HIV-1 protease inhibitor prefers its amine to the hydroxy group in binding to catalytic aspartates. A synchrotron study of HIV-1 protease in complex with a peptidomimetic inhibitor.
    Dohnálek J; Hasek J; Dusková J; Petroková H; Hradilek M; Soucek M; Konvalinka J; Brynda J; Sedlácek J; Fábry M
    J Med Chem; 2002 Mar; 45(7):1432-8. PubMed ID: 11906284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative binding free energies of peptide inhibitors of HIV-1 protease: the influence of the active site protonation state.
    Chen X; Tropsha A
    J Med Chem; 1995 Jan; 38(1):42-8. PubMed ID: 7837238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the functional role of protonation states in the HIV-1 protease-BEA369 complex: molecular dynamics simulations and free energy calculations.
    Chen J; Yang M; Hu G; Shi S; Yi C; Zhang Q
    J Mol Model; 2009 Oct; 15(10):1245-52. PubMed ID: 19294437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.