These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 12124423)
1. Intracellular distribution of the fluorescent dye nonyl acridine orange responds to the mitochondrial membrane potential: implications for assays of cardiolipin and mitochondrial mass. Jacobson J; Duchen MR; Heales SJ J Neurochem; 2002 Jul; 82(2):224-33. PubMed ID: 12124423 [TBL] [Abstract][Full Text] [Related]
2. Discrimination of respiratory dysfunction in yeast mutants by confocal microscopy, image, and flow cytometry. Petit P; Glab N; Marie D; Kieffer H; Métézeau P Cytometry; 1996 Jan; 23(1):28-38. PubMed ID: 14650438 [TBL] [Abstract][Full Text] [Related]
3. 10N-nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. Petit JM; Maftah A; Ratinaud MH; Julien R Eur J Biochem; 1992 Oct; 209(1):267-73. PubMed ID: 1396703 [TBL] [Abstract][Full Text] [Related]
4. Staining of mitochondrial membranes with 10-nonyl acridine orange, MitoFluor Green, and MitoTracker Green is affected by mitochondrial membrane potential altering drugs. Keij JF; Bell-Prince C; Steinkamp JA Cytometry; 2000 Mar; 39(3):203-10. PubMed ID: 10685077 [TBL] [Abstract][Full Text] [Related]
5. Use of the fluorescent dye 10-N-nonyl acridine orange in quantitative and location assays of cardiolipin: a study on different experimental models. Garcia Fernandez MI; Ceccarelli D; Muscatello U Anal Biochem; 2004 May; 328(2):174-80. PubMed ID: 15113694 [TBL] [Abstract][Full Text] [Related]
6. Comparison of N-alkyl acridine orange dyes as fluorescence probes for the determination of cardiolipin. Kaewsuya P; Miller JD; Danielson ND; Sanjeevi J; James PF Anal Chim Acta; 2008 Sep; 626(2):111-8. PubMed ID: 18790112 [TBL] [Abstract][Full Text] [Related]
7. Targeting of mitochondria by 10-N-alkyl acridine orange analogues: role of alkyl chain length in determining cellular uptake and localization. Rodriguez ME; Azizuddin K; Zhang P; Chiu SM; Lam M; Kenney ME; Burda C; Oleinick NL Mitochondrion; 2008 Jun; 8(3):237-46. PubMed ID: 18514589 [TBL] [Abstract][Full Text] [Related]
9. Compared flow cytometric analysis of mitochondria using 10-n-nonyl acridine orange and rhodamine 123. Benel L; Ronot X; Mounolou JC; Gaudemer F; Adolphe M Basic Appl Histochem; 1989; 33(2):71-80. PubMed ID: 2757602 [TBL] [Abstract][Full Text] [Related]
10. [Hydrophobic acridine dyes for fluorescent staining of mitochondria in living cells. 3. Specific accumulation of the fluorescent dye NAO on the mitochondrial membranes in HeLa cells by hydrophobic interaction. Depression of respiratory activity, changes in the ultrastructure of mitochondria due to NAO. Increase of fluorescence in vital stained mitochondria in situ by irradiation]. Septinus M; Berthold T; Naujok A; Zimmermann HW Histochemistry; 1985; 82(1):51-66. PubMed ID: 2579934 [TBL] [Abstract][Full Text] [Related]
11. Archaebacterial lipid membranes as models to study the interaction of 10-N-nonyl acridine orange with phospholipids. Lobasso S; Saponetti MS; Polidoro F; Lopalco P; Urbanija J; Kralj-Iglic V; Corcelli A Chem Phys Lipids; 2009 Jan; 157(1):12-20. PubMed ID: 18938147 [TBL] [Abstract][Full Text] [Related]
12. Detection of de- and hyperpolarization of mitochondria of cultured astrocytes and neurons by the cationic fluorescent dye rhodamine 123. Kahlert S; Zündorf G; Reiser G J Neurosci Methods; 2008 Jun; 171(1):87-92. PubMed ID: 18400303 [TBL] [Abstract][Full Text] [Related]
13. Direct analysis and significance of cardiolipin transverse distribution in mitochondrial inner membranes. Petit JM; Huet O; Gallet PF; Maftah A; Ratinaud MH; Julien R Eur J Biochem; 1994 Mar; 220(3):871-9. PubMed ID: 8143741 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of cytochrome c release by 10-N-nonyl acridine orange, a cardiolipin-specific dye, during myocardial ischemia-reperfusion in the rat. Zhang GX; Kimura S; Murao K; Obata K; Matsuyoshi H; Takaki M Am J Physiol Heart Circ Physiol; 2010 Feb; 298(2):H433-9. PubMed ID: 19940077 [TBL] [Abstract][Full Text] [Related]
15. Insights into the Formation of Intermolecular Complexes of Fluorescent Probe 10- Kholina E; Kovalenko I; Rubin A; Strakhovskaya M Molecules; 2023 Feb; 28(4):. PubMed ID: 36838917 [TBL] [Abstract][Full Text] [Related]
16. Impact of proliferative activity and tumorigenic conversion on mitochondrial function of fibroblasts in 2D and 3D culture. Kunz-Schughart LA; Habbersett RC; Freyer JP Cell Biol Int; 2001; 25(9):919-30. PubMed ID: 11518499 [TBL] [Abstract][Full Text] [Related]
17. MitoTracker labeling in primary neuronal and astrocytic cultures: influence of mitochondrial membrane potential and oxidants. Buckman JF; Hernández H; Kress GJ; Votyakova TV; Pal S; Reynolds IJ J Neurosci Methods; 2001 Jan; 104(2):165-76. PubMed ID: 11164242 [TBL] [Abstract][Full Text] [Related]
18. Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. Mileykovskaya E; Dowhan W J Bacteriol; 2000 Feb; 182(4):1172-5. PubMed ID: 10648548 [TBL] [Abstract][Full Text] [Related]
19. Superior fluorescent probe for detection of cardiolipin. Leung CW; Hong Y; Hanske J; Zhao E; Chen S; Pletneva EV; Tang BZ Anal Chem; 2014 Jan; 86(2):1263-8. PubMed ID: 24372165 [TBL] [Abstract][Full Text] [Related]
20. Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Nomura K; Imai H; Koumura T; Kobayashi T; Nakagawa Y Biochem J; 2000 Oct; 351(Pt 1):183-93. PubMed ID: 10998361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]