These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 12124794)
1. Hyaluronate-heparin conjugate gels for the delivery of basic fibroblast growth factor (FGF-2). Liu LS; Ng CK; Thompson AY; Poser JW; Spiro RC J Biomed Mater Res; 2002 Oct; 62(1):128-35. PubMed ID: 12124794 [TBL] [Abstract][Full Text] [Related]
2. Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Cai S; Liu Y; Zheng Shu X; Prestwich GD Biomaterials; 2005 Oct; 26(30):6054-67. PubMed ID: 15958243 [TBL] [Abstract][Full Text] [Related]
3. Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Pike DB; Cai S; Pomraning KR; Firpo MA; Fisher RJ; Shu XZ; Prestwich GD; Peattie RA Biomaterials; 2006 Oct; 27(30):5242-51. PubMed ID: 16806456 [TBL] [Abstract][Full Text] [Related]
4. Heparin-modified dendrimer cross-linked collagen matrices for the delivery of basic fibroblast growth factor (FGF-2). Princz MA; Sheardown H J Biomater Sci Polym Ed; 2008; 19(9):1201-18. PubMed ID: 18727861 [TBL] [Abstract][Full Text] [Related]
5. Controlled release of fibroblast growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivo vascularization. Ishihara M; Obara K; Ishizuka T; Fujita M; Sato M; Masuoka K; Saito Y; Yura H; Matsui T; Hattori H; Kikuchi M; Kurita A J Biomed Mater Res A; 2003 Mar; 64(3):551-9. PubMed ID: 12579570 [TBL] [Abstract][Full Text] [Related]
6. Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly(L-lactide-co-glycolide) nanospheres and fibrin gel. Jeon O; Kang SW; Lim HW; Hyung Chung J; Kim BS Biomaterials; 2006 Mar; 27(8):1598-607. PubMed ID: 16146647 [TBL] [Abstract][Full Text] [Related]
8. Preservation of FGF-2 bioactivity using heparin-based nanoparticles, and their delivery from electrospun chitosan fibers. Zomer Volpato F; Almodóvar J; Erickson K; Popat KC; Migliaresi C; Kipper MJ Acta Biomater; 2012 Apr; 8(4):1551-9. PubMed ID: 22210184 [TBL] [Abstract][Full Text] [Related]
9. Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor. Ho YC; Mi FL; Sung HW; Kuo PL Int J Pharm; 2009 Jul; 376(1-2):69-75. PubMed ID: 19450670 [TBL] [Abstract][Full Text] [Related]
10. Delivery of basic fibroblast growth factor (bFGF) from photoresponsive hydrogel scaffolds. Andreopoulos FM; Persaud I Biomaterials; 2006 Apr; 27(11):2468-76. PubMed ID: 16321436 [TBL] [Abstract][Full Text] [Related]
11. Imparting bone mineral affinity to osteogenic proteins through heparin-bisphosphonate conjugates. Gittens SA; Bagnall K; Matyas JR; Löbenberg R; Uludag H J Control Release; 2004 Aug; 98(2):255-68. PubMed ID: 15262417 [TBL] [Abstract][Full Text] [Related]
12. Acidic and basic fibroblast growth factors prolong the in-vitro survival of murine peritoneal macrophages. Hackshaw KV; Trout AM Res Commun Mol Pathol Pharmacol; 1996 Jun; 92(3):373-8. PubMed ID: 8827835 [TBL] [Abstract][Full Text] [Related]
13. Denatured collagen as support for a FGF-2 delivery system: physicochemical characterizations and in vitro release kinetics and bioactivity. Côté MF; Laroche G; Gagnon E; Chevallier P; Doillon CJ Biomaterials; 2004 Aug; 25(17):3761-72. PubMed ID: 15020152 [TBL] [Abstract][Full Text] [Related]
14. The use of sulfonated silk fibroin derivatives to control binding, delivery and potency of FGF-2 in tissue regeneration. Wenk E; Murphy AR; Kaplan DL; Meinel L; Merkle HP; Uebersax L Biomaterials; 2010 Feb; 31(6):1403-13. PubMed ID: 19942287 [TBL] [Abstract][Full Text] [Related]
15. Therapeutic angiogenesis induced by controlled release of fibroblast growth factor-2 from injectable chitosan/non-anticoagulant heparin hydrogel in a rat hindlimb ischemia model. Fujita M; Ishihara M; Shimizu M; Obara K; Nakamura S; Kanatani Y; Morimoto Y; Takase B; Matsui T; Kikuchi M; Maehara T Wound Repair Regen; 2007; 15(1):58-65. PubMed ID: 17244320 [TBL] [Abstract][Full Text] [Related]
16. Tetronic-oligolactide-heparin hydrogel as a multi-functional scaffold for tissue regeneration. Go DH; Joung YK; Lee SY; Lee MC; Park KD Macromol Biosci; 2008 Dec; 8(12):1152-60. PubMed ID: 18698580 [TBL] [Abstract][Full Text] [Related]
17. Distribution of fibroblast growth factor-2 (FGF-2) within model excisional wounds following topical application. Braund R; Hook SM; Greenhill N; Medlicott NJ J Pharm Pharmacol; 2009 Feb; 61(2):193-200. PubMed ID: 19178766 [TBL] [Abstract][Full Text] [Related]
18. Controlled release of fibroblast growth factor 2 stimulates bone healing in an animal model of diabetes mellitus. Santana RB; Trackman PC Int J Oral Maxillofac Implants; 2006; 21(5):711-8. PubMed ID: 17066631 [TBL] [Abstract][Full Text] [Related]
19. Formation of dentinal bridge on surface of regenerated dental pulp in dentin defects by controlled release of fibroblast growth factor-2 from gelatin hydrogels. Ishimatsu H; Kitamura C; Morotomi T; Tabata Y; Nishihara T; Chen KK; Terashita M J Endod; 2009 Jun; 35(6):858-65. PubMed ID: 19482186 [TBL] [Abstract][Full Text] [Related]
20. Enhanced growth of megakaryocyte colonies in culture in the presence of heparin and fibroblast growth factor. Chen QS; Wang ZY; Han ZC Int J Hematol; 1999 Oct; 70(3):155-62. PubMed ID: 10561907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]