These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 12125098)

  • 1. Glyceraldehyde metabolism in human erythrocytes in comparison with that of glucose and dihydroxyacetone.
    Taguchi T; Murase S; Miwa I
    Cell Biochem Funct; 2002 Sep; 20(3):223-6. PubMed ID: 12125098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reduction of glyceraldehyde by human erythrocytes. L-hexonate dehydrogenase activity.
    Beutler E; Guinto E
    J Clin Invest; 1974 May; 53(5):1258-64. PubMed ID: 4825223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactate dehydrogenase A-subunit and B-subunit deficiencies: comparison of the physiological roles of LDH isozymes.
    Kanno T; Sudo K; Kitamura M; Miwa S; Ichiyama A; Nishimura Y
    Isozymes Curr Top Biol Med Res; 1983; 7():131-50. PubMed ID: 6411649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of rat-liver alcohol dehydrogenase in the glycerol pathway to L-lactate in homogenates.
    Feraudi M; Bert H
    Arch Int Physiol Biochim; 1977 Feb; 85(1):91-100. PubMed ID: 68762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymes for the NADPH-dependent reduction of dihydroxyacetone and D-glyceraldehyde and L-glyceraldehyde in the mould Hypocrea jecorina.
    Liepins J; Kuorelahti S; Penttilä M; Richard P
    FEBS J; 2006 Sep; 273(18):4229-35. PubMed ID: 16930134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acceleration of glycolysis in erythrocytes by the antidiabetic agent M16209.
    Hashimoto K; Murakami N; Ohta M; Kato K; Mizota M; Miwa I; Okuda J
    Biol Pharm Bull; 1996 Jun; 19(6):809-13. PubMed ID: 8799477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation of insulin release by glyceraldehyde may not be similar to glucose.
    MacDonald MJ; Chaplen FW; Triplett CK; Gong Q; Drought H
    Arch Biochem Biophys; 2006 Mar; 447(2):118-26. PubMed ID: 16530160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1.
    Tanaka K; Komiyama A; Sonomoto K; Ishizaki A; Hall SJ; Stanbury PF
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):160-7. PubMed ID: 12382058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of the glycolytic pathway by methylglyoxal in human platelets.
    Leoncini G; Maresca M; Buzzi E
    Cell Biochem Funct; 1989 Jan; 7(1):65-70. PubMed ID: 2752537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycolytic enzyme activity is essential for domestic cat (Felis catus) and cheetah (Acinonyx jubatus) sperm motility and viability in a sugar-free medium.
    Terrell KA; Wildt DE; Anthony NM; Bavister BD; Leibo SP; Penfold LM; Marker LL; Crosier AE
    Biol Reprod; 2011 Jun; 84(6):1198-206. PubMed ID: 21325689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activated and unactivated forms of human erythrocyte aldose reductase.
    Srivastava SK; Hair GA; Das B
    Proc Natl Acad Sci U S A; 1985 Nov; 82(21):7222-6. PubMed ID: 3933003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli.
    Zhu J; Shimizu K
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):367-75. PubMed ID: 14673546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose metabolism is accelerated by exposure to t-butylhydroperoxide during NADH consumption in human erythrocytes.
    Ogasawara Y; Funakoshi M; Ishii K
    Blood Cells Mol Dis; 2008; 41(3):237-43. PubMed ID: 18706836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of sesquiterpene lactones, eupatoriopicrin and hydroxyisonobilin, on the glycolytic metabolism of human lymphocytes.
    Baer W; Chmiel J; Gnojkowski J; Klimek D
    Int J Clin Pharmacol Ther Toxicol; 1983 Jan; 21(1):41-6. PubMed ID: 6832866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic effects of D-glyceraldehyde in isolated hepatocytes.
    Maswoswe SM; Daneshmand F; Davies DR
    Biochem J; 1986 Dec; 240(3):771-6. PubMed ID: 3827866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of glycolysis in the erythrocyte: role of the lactate/pyruvate and NAD/NADH ratios.
    Tilton WM; Seaman C; Carriero D; Piomelli S
    J Lab Clin Med; 1991 Aug; 118(2):146-52. PubMed ID: 1856577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aldose reductase does catalyse the reduction of glyceraldehyde through a stoichiometric oxidation of NADPH.
    Del Corso A; Costantino L; Rastelli G; Buono F; Mura U
    Exp Eye Res; 2000 Nov; 71(5):515-21. PubMed ID: 11040087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomeric preference of glucose phosphorylation and glycolysis in human erythrocytes.
    Fujii H; Miwa I; Okuda J
    Biochem Int; 1986 Aug; 13(2):359-65. PubMed ID: 3768015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of glycolysis in human red cells.
    Yoshikawa H; Minakami S
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):357-75. PubMed ID: 4176832
    [No Abstract]   [Full Text] [Related]  

  • 20. Proliferating tumor cells mimick glucose metabolism of mature human erythrocytes.
    Ghashghaeinia M; Köberle M; Mrowietz U; Bernhardt I
    Cell Cycle; 2019 Jun; 18(12):1316-1334. PubMed ID: 31154896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.