These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12126272)

  • 1. Porous polymer monoliths: an alternative to classical beads.
    Xie S; Allington RW; Fréchet JM; Svec F
    Adv Biochem Eng Biotechnol; 2002; 76():87-125. PubMed ID: 12126272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and HPLC applications of rigid macroporous organic polymer monoliths.
    Svec F
    J Sep Sci; 2004 Jul; 27(10-11):747-66. PubMed ID: 15354553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic polymer monoliths as stationary phases for capillary HPLC.
    Svec F
    J Sep Sci; 2004 Dec; 27(17-18):1419-30. PubMed ID: 15638150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New formats of polymeric stationary phases for HPLC separations: molded macroporous disks and rods.
    Svec F; Fréchet JM
    J Mol Recognit; 1996; 9(5-6):326-34. PubMed ID: 9174906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous monoliths: stationary phases of choice for high performance liquid chromatography in various formats.
    Svec F
    Se Pu; 2005 Nov; 23(6):585-94. PubMed ID: 16498986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Less common applications of monoliths: I. Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports.
    Svec F
    Electrophoresis; 2006 Mar; 27(5-6):947-61. PubMed ID: 16470758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molded rigid polymer monoliths as separation media for capillary electrochromatography.
    Peters EC; Petro M; Svec F; Fréchet JM
    Anal Chem; 1997 Sep; 69(17):3646-9. PubMed ID: 9286168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards stationary phases for chromatography on a microchip: molded porous polymer monoliths prepared in capillaries by photoinitiated in situ polymerization as separation media for electrochromatography.
    Yu C; Svec F; Fréchet JM
    Electrophoresis; 2000 Jan; 21(1):120-7. PubMed ID: 10634478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New designs of macroporous polymers and supports: from separation to biocatalysis.
    Svec F; Fréchet JM
    Science; 1996 Jul; 273(5272):205-11. PubMed ID: 8662498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molded rigid polymer monoliths as separation media for capillary electrochromatography. 1. Fine control of porous properties and surface chemistry.
    Peters EC; Petro M; Svec F; Fréchet JM
    Anal Chem; 1998 Jun; 70(11):2288-95. PubMed ID: 9624900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous polymer monoliths: morphology, porous properties, polymer nanoscale gel structure and their impact on chromatographic performance.
    Nischang I
    J Chromatogr A; 2013 Apr; 1287():39-58. PubMed ID: 23261286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards porous polymer monoliths for the efficient, retention-independent performance in the isocratic separation of small molecules by means of nano-liquid chromatography.
    Nischang I; Teasdale I; Brüggemann O
    J Chromatogr A; 2010 Nov; 1217(48):7514-22. PubMed ID: 20980011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Downscaling limits and confinement effects in the miniaturization of porous polymer monoliths in narrow bore capillaries.
    Nischang I; Svec F; Fréchet JM
    Anal Chem; 2009 Sep; 81(17):7390-6. PubMed ID: 19642657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges and strategies in the preparation of large-volume polymer-based monolithic chromatography adsorbents.
    Ongkudon CM; Kansil T; Wong C
    J Sep Sci; 2014 Mar; 37(5):455-64. PubMed ID: 24376196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Preparation and optimization of polymer-based monolithic stationary phase for high performance liquid chromatography].
    Wei Y; Zou J; Yang C; Zhang Q; Zhang W; Wang F; Li T
    Se Pu; 2005 May; 23(3):251-4. PubMed ID: 16124566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of glycerol dimethacrylate-based polymer monolith with unusual porous properties achieved via viscoelastic phase separation induced by monodisperse ultra high molecular weight poly(styrene) as a porogen.
    Aoki H; Kubo T; Ikegami T; Tanaka N; Hosoya K; Tokuda D; Ishizuka N
    J Chromatogr A; 2006 Jun; 1119(1-2):66-79. PubMed ID: 16513125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macroporous gels prepared at subzero temperatures as novel materials for chromatography of particulate-containing fluids and cell culture applications.
    Plieva FM; Galaev IY; Mattiasson B
    J Sep Sci; 2007 Jul; 30(11):1657-71. PubMed ID: 17623447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioselective nano liquid chromatographic separation of racemic pharmaceuticals: a facile one-pot in situ preparation of lipase-based polymer monoliths in capillary format.
    Ahmed M; Ghanem A
    Chirality; 2014 Nov; 26(11):754-63. PubMed ID: 24604679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radical-mediated step-growth: Preparation of hybrid polymer monolithic columns with fine control of nanostructural and chromatographic characteristics.
    Alves F; Nischang I
    J Chromatogr A; 2015 Sep; 1412():112-25. PubMed ID: 26303255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of macroporous monoliths imprinted with erythromycin.
    Vlakh EG; Stepanova MA; Pisarev OA; Tennikova TB
    J Sep Sci; 2015 Aug; 38(16):2763-71. PubMed ID: 26033867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.