These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 12126671)

  • 1. Hierarchical genetic algorithm versus static optimization-investigation of elbow flexion and extension movements.
    Raikova RT; Aladjov HTs
    J Biomech; 2002 Aug; 35(8):1123-35. PubMed ID: 12126671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling investigation of learning a fast elbow flexion in the horizontal plane--prediction of muscle forces and motor units action.
    Raikova RT; Gabriel DA; Aladjov HTs
    Comput Methods Biomech Biomed Engin; 2006 Aug; 9(4):211-9. PubMed ID: 17132529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between two muscle models under dynamic conditions.
    Raikova RT; Aladjov HTs
    Comput Biol Med; 2005 Jun; 35(5):373-87. PubMed ID: 15767114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of the motor units control during a fast elbow flexion in the sagittal plane.
    Raikova RT; Aladjov HTs
    J Electromyogr Kinesiol; 2004 Apr; 14(2):227-38. PubMed ID: 14962775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of the way the muscle force is modeled on the predicted results obtained by solving indeterminate problems for a fast elbow flexion.
    Raikova R; Aladjov H
    Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):181-96. PubMed ID: 12888430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue induced changes in phasic muscle activation patterns for fast elbow flexion movements.
    Corcos DM; Jiang HY; Wilding J; Gottlieb GL
    Exp Brain Res; 2002 Jan; 142(1):1-12. PubMed ID: 11797079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor unit firing behavior in human arm flexor muscles during sinusoidal isometric contractions and movements.
    van Bolhuis BM; Medendorp WP; Gielen CC
    Exp Brain Res; 1997 Oct; 117(1):120-30. PubMed ID: 9386010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of the flexion-extension motion in the elbow joint some problems concerning muscle forces modelling and computation.
    Raikova R
    J Biomech; 1996 Jun; 29(6):763-72. PubMed ID: 9147973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of joint moments using a neural network model of muscle activations from EMG signals.
    Wang L; Buchanan TS
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):30-7. PubMed ID: 12173737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An artificial neural network approach and sensitivity analysis in predicting skeletal muscle forces.
    Vilimek M
    Acta Bioeng Biomech; 2014; 16(3):119-27. PubMed ID: 25307446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-Body Reaching Movements Formulated by Minimum Muscle-Tension Change Criterion.
    Kudo N; Choi K; Kagawa T; Uno Y
    Neural Comput; 2016 May; 28(5):950-69. PubMed ID: 26942751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variability of successive contractions subtracted from unfused tetanus of fast and slow motor units.
    Raikova R; Pogrzebna M; DrzymaƂa H; Celichowski J; Aladjov H
    J Electromyogr Kinesiol; 2008 Oct; 18(5):741-51. PubMed ID: 17419073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Individual muscle force parameters and fiber operating ranges for elbow flexion-extension and forearm pronation-supination.
    Hale R; Dorman D; Gonzalez RV
    J Biomech; 2011 Feb; 44(4):650-6. PubMed ID: 21145061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relation between torque history, firing frequency, decruitment levels and force balance in two flexors of the elbow.
    van Groeningen CJ; Nijhof EJ; Vermeule FM; Erkelens CJ
    Exp Brain Res; 1999 Dec; 129(4):592-604. PubMed ID: 10638433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the external forces and moments at the shoulder and elbow while performing every day tasks.
    Murray IA; Johnson GR
    Clin Biomech (Bristol, Avon); 2004 Jul; 19(6):586-94. PubMed ID: 15234482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of summation of individual twitches into unfused tetanus for various types of rat motor units.
    Raikova R; Celichowski J; Pogrzebna M; Aladjov H; Krutki P
    J Electromyogr Kinesiol; 2007 Apr; 17(2):121-30. PubMed ID: 16531070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies used to stabilize the elbow joint challenged by inverted pendulum loading.
    Stokes IA; Gardner-Morse MG
    J Biomech; 2000 Jun; 33(6):737-43. PubMed ID: 10807995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Musculotendon forces derived by different muscle models.
    Vilimek M
    Acta Bioeng Biomech; 2007; 9(2):41-7. PubMed ID: 18421942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromusculoskeletal model self-calibration for on-line sequential bayesian moment estimation.
    Bueno DR; Montano L
    J Neural Eng; 2017 Apr; 14(2):026011. PubMed ID: 28079030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.