These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 12126705)
1. In vitro properties of a recombinant flavonol synthase from Arabidopsis thaliana. Prescott AG; Stamford NP; Wheeler G; Firmin JL Phytochemistry; 2002 Jul; 60(6):589-93. PubMed ID: 12126705 [TBL] [Abstract][Full Text] [Related]
2. Flavonol synthase from Citrus unshiu is a bifunctional dioxygenase. Lukacin R; Wellmann F; Britsch L; Martens S; Matern U Phytochemistry; 2003 Feb; 62(3):287-92. PubMed ID: 12620339 [TBL] [Abstract][Full Text] [Related]
3. Functional expression and mutational analysis of flavonol synthase from Citrus unshiu. Wellmann F; Lukacin R; Moriguchi T; Britsch L; Schiltz E; Matern U Eur J Biochem; 2002 Aug; 269(16):4134-42. PubMed ID: 12180990 [TBL] [Abstract][Full Text] [Related]
4. Development and Optimization of an In Vitro Multienzyme Synthetic System for Production of Kaempferol from Naringenin. Zhang Z; He Y; Huang Y; Ding L; Chen L; Liu Y; Nie Y; Zhang X J Agric Food Chem; 2018 Aug; 66(31):8272-8279. PubMed ID: 30019587 [TBL] [Abstract][Full Text] [Related]
5. Elucidation of myricetin biosynthesis in Morella rubra of the Myricaceae. Xing M; Cao Y; Ren C; Liu Y; Li J; Grierson D; Martin C; Sun C; Chen K; Xu C; Li X Plant J; 2021 Oct; 108(2):411-425. PubMed ID: 34331782 [TBL] [Abstract][Full Text] [Related]
6. Molecular characterization of flavonol synthase from poplar and its application to the synthesis of 3-O-methylkaempferol. Kim BG; Joe EJ; Ahn JH Biotechnol Lett; 2010 Apr; 32(4):579-84. PubMed ID: 20033832 [TBL] [Abstract][Full Text] [Related]
10. Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and end-products in Arabidopsis seedlings. Pelletier MK; Burbulis IE; Winkel-Shirley B Plant Mol Biol; 1999 May; 40(1):45-54. PubMed ID: 10394944 [TBL] [Abstract][Full Text] [Related]
11. Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin: glutathione oxidation and conjugation. Galati G; Moridani MY; Chan TS; O'Brien PJ Free Radic Biol Med; 2001 Feb; 30(4):370-82. PubMed ID: 11182292 [TBL] [Abstract][Full Text] [Related]
12. Cloning, characterization, and activity analysis of a flavonol synthase gene FtFLS1 and its association with flavonoid content in tartary buckwheat. Li C; Bai Y; Li S; Chen H; Han X; Zhao H; Shao J; Park SU; Wu Q J Agric Food Chem; 2012 May; 60(20):5161-8. PubMed ID: 22563787 [TBL] [Abstract][Full Text] [Related]
13. Combinatorial biosynthesis of flavones and flavonols in Escherichia coli. Miyahisa I; Funa N; Ohnishi Y; Martens S; Moriguchi T; Horinouchi S Appl Microbiol Biotechnol; 2006 Jun; 71(1):53-8. PubMed ID: 16133333 [TBL] [Abstract][Full Text] [Related]
14. Elucidation of active site residues of Arabidopsis thaliana flavonol synthase provides a molecular platform for engineering flavonols. Chua CS; Biermann D; Goo KS; Sim TS Phytochemistry; 2008 Jan; 69(1):66-75. PubMed ID: 17719613 [TBL] [Abstract][Full Text] [Related]
15. Structural and mechanistic studies on anthocyanidin synthase catalysed oxidation of flavanone substrates: the effect of C-2 stereochemistry on product selectivity and mechanism. Welford RW; Clifton IJ; Turnbull JJ; Wilson SC; Schofield CJ Org Biomol Chem; 2005 Sep; 3(17):3117-26. PubMed ID: 16106293 [TBL] [Abstract][Full Text] [Related]
16. Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae. Park SR; Yoon JA; Paik JH; Park JW; Jung WS; Ban YH; Kim EJ; Yoo YJ; Han AR; Yoon YJ J Biotechnol; 2009 May; 141(3-4):181-8. PubMed ID: 19433224 [TBL] [Abstract][Full Text] [Related]
17. Substrate preference of citrus naringenin rhamnosyltransferases and their application to flavonoid glycoside production in fission yeast. Ohashi T; Hasegawa Y; Misaki R; Fujiyama K Appl Microbiol Biotechnol; 2016 Jan; 100(2):687-96. PubMed ID: 26433966 [TBL] [Abstract][Full Text] [Related]
18. First purified recombinant CYP75B including transmembrane helix with unexpected high substrate specificity to (2R)-naringenin. Hausjell J; Weissensteiner J; Molitor C; Schlangen K; Spadiut O; Halbwirth H Sci Rep; 2022 May; 12(1):8548. PubMed ID: 35595763 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic conversion of flavonoids using bacterial chalcone isomerase and enoate reductase. Gall M; Thomsen M; Peters C; Pavlidis IV; Jonczyk P; Grünert PP; Beutel S; Scheper T; Gross E; Backes M; Geissler T; Ley JP; Hilmer JM; Krammer G; Palm GJ; Hinrichs W; Bornscheuer UT Angew Chem Int Ed Engl; 2014 Jan; 53(5):1439-42. PubMed ID: 24459060 [TBL] [Abstract][Full Text] [Related]
20. Flavonoid 3'-O-methyltransferase from rice: cDNA cloning, characterization and functional expression. Kim BG; Lee Y; Hur HG; Lim Y; Ahn JH Phytochemistry; 2006 Feb; 67(4):387-94. PubMed ID: 16412485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]