These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
546 related articles for article (PubMed ID: 12126799)
1. Anti-/pro-oxidant effects of phenolic compounds in cells: are colchicine metabolites chain-breaking antioxidants? Modriansky M; Tyurina YY; Tyurin VA; Matsura T; Shvedova AA; Yalowich JC; Kagan VE Toxicology; 2002 Aug; 177(1):105-17. PubMed ID: 12126799 [TBL] [Abstract][Full Text] [Related]
2. Pro-oxidant and antioxidant mechanisms of etoposide in HL-60 cells: role of myeloperoxidase. Kagan VE; Kuzmenko AI; Tyurina YY; Shvedova AA; Matsura T; Yalowich JC Cancer Res; 2001 Nov; 61(21):7777-84. PubMed ID: 11691792 [TBL] [Abstract][Full Text] [Related]
3. Direct oxidation of polyunsaturated cis-parinaric fatty acid by phenoxyl radicals generated by peroxidase/H2O2 in model systems and in HL-60 cells. Ritov VB; Menshikova EV; Goldman R; Kagan VE Toxicol Lett; 1996 Oct; 87(2-3):121-9. PubMed ID: 8914620 [TBL] [Abstract][Full Text] [Related]
4. Antioxidant paradoxes of phenolic compounds: peroxyl radical scavenger and lipid antioxidant, etoposide (VP-16), inhibits sarcoplasmic reticulum Ca(2+)-ATPase via thiol oxidation by its phenoxyl radical. Ritov VB; Goldman R; Stoyanovsky DA; Menshikova EV; Kagan VE Arch Biochem Biophys; 1995 Aug; 321(1):140-52. PubMed ID: 7639514 [TBL] [Abstract][Full Text] [Related]
5. Direct evidence for recycling of myeloperoxidase-catalyzed phenoxyl radicals of a vitamin E homologue, 2,2,5,7,8-pentamethyl-6-hydroxy chromane, by ascorbate/dihydrolipoate in living HL-60 cells. Kagan VE; Kuzmenko AI; Shvedova AA; Kisin ER; Li R; Martin I; Quinn PJ; Tyurin VA; Tyurina YY; Yalowich JC Biochim Biophys Acta; 2003 Mar; 1620(1-3):72-84. PubMed ID: 12595076 [TBL] [Abstract][Full Text] [Related]
6. Myeloperoxidase-catalyzed redox-cycling of phenol promotes lipid peroxidation and thiol oxidation in HL-60 cells. Goldman R; Claycamp GH; Sweetland MA; Sedlov AV; Tyurin VA; Kisin ER; Tyurina YY; Ritov VB; Wenger SL; Grant SG; Kagan VE Free Radic Biol Med; 1999 Nov; 27(9-10):1050-63. PubMed ID: 10569638 [TBL] [Abstract][Full Text] [Related]
7. Phenoxyl radicals of etoposide (VP-16) can directly oxidize intracellular thiols: protective versus damaging effects of phenolic antioxidants. Tyurina YY; Tyurin VA; Yalowich JC; Quinn PJ; Claycamp HG; Schor NF; Pitt BR; Kagan VE Toxicol Appl Pharmacol; 1995 Apr; 131(2):277-88. PubMed ID: 7716769 [TBL] [Abstract][Full Text] [Related]
8. Peroxidase-catalyzed pro- versus antioxidant effects of 4-hydroxytamoxifen: enzyme specificity and biochemical sequelae. Day BW; Tyurin VA; Tyurina YY; Liu M; Facey JA; Carta G; Kisin ER; Dubey RK; Kagan VE Chem Res Toxicol; 1999 Jan; 12(1):28-37. PubMed ID: 9894015 [TBL] [Abstract][Full Text] [Related]
9. Peroxidase-catalyzed oxidation of beta-carotene in HL-60 cells and in model systems: involvement of phenoxyl radicals. Tyurin VA; Carta G; Tyurina YY; Banni S; Day BW; Corongiu FP; Kagan VE Lipids; 1997 Feb; 32(2):131-42. PubMed ID: 9075202 [TBL] [Abstract][Full Text] [Related]
11. Ascorbate interacts with reduced glutathione to scavenge phenoxyl radicals in HL60 cells. Cuddihy SL; Parker A; Harwood DT; Vissers MC; Winterbourn CC Free Radic Biol Med; 2008 Apr; 44(8):1637-44. PubMed ID: 18291121 [TBL] [Abstract][Full Text] [Related]
12. Ascorbate is the primary reductant of the phenoxyl radical of etoposide in the presence of thiols both in cell homogenates and in model systems. Kagan VE; Yalowich JC; Day BW; Goldman R; Gantchev TG; Stoyanovsky DA Biochemistry; 1994 Aug; 33(32):9651-60. PubMed ID: 8068642 [TBL] [Abstract][Full Text] [Related]
13. Non-random peroxidation of different classes of membrane phospholipids in live cells detected by metabolically integrated cis-parinaric acid. Ritov VB; Banni S; Yalowich JC; Day BW; Claycamp HG; Corongiu FP; Kagan VE Biochim Biophys Acta; 1996 Sep; 1283(2):127-40. PubMed ID: 8809092 [TBL] [Abstract][Full Text] [Related]
15. Antioxidant and pro-oxidant effect of the thiolic compounds N-acetyl-L-cysteine and glutathione against free radical-induced lipid peroxidation. Sagristá ML; GarcĂa AE; Africa De Madariaga M; Mora M Free Radic Res; 2002 Mar; 36(3):329-40. PubMed ID: 12071352 [TBL] [Abstract][Full Text] [Related]
16. Drug-induced protein free radical formation is attenuated by unsaturated fatty acids by scavenging drug-derived phenyl radical metabolites. Narwaley M; Michail K; Arvadia P; Siraki AG Chem Res Toxicol; 2011 Jul; 24(7):1031-9. PubMed ID: 21671642 [TBL] [Abstract][Full Text] [Related]
17. Interaction of the pyridoindole stobadine with peroxyl, superoxide and chromanoxyl radicals. Kagan VE; Tsuchiya M; Serbinova E; Packer L; Sies H Biochem Pharmacol; 1993 Jan; 45(2):393-400. PubMed ID: 8382064 [TBL] [Abstract][Full Text] [Related]
18. HTHQ (1-O-hexyl-2,3,5-trimethylhydroquinone), an anti-lipid-peroxidative compound: its chemical and biochemical characterizations. Hino T; Kawanishi S; Yasui H; Oka S; Sakurai H Biochim Biophys Acta; 1998 Sep; 1425(1):47-60. PubMed ID: 9813237 [TBL] [Abstract][Full Text] [Related]
19. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Dinis TC; Maderia VM; Almeida LM Arch Biochem Biophys; 1994 Nov; 315(1):161-9. PubMed ID: 7979394 [TBL] [Abstract][Full Text] [Related]
20. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Sakihama Y; Cohen MF; Grace SC; Yamasaki H Toxicology; 2002 Aug; 177(1):67-80. PubMed ID: 12126796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]