These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12126867)

  • 1. Neural degeneration following chronic stimulant abuse reveals a weak link in brain, fasciculus retroflexus, implying the loss of forebrain control circuitry.
    Ellison G
    Eur Neuropsychopharmacol; 2002 Aug; 12(4):287-97. PubMed ID: 12126867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective neurotoxic effects of nicotine on axons in fasciculus retroflexus further support evidence that this a weak link in brain across multiple drugs of abuse.
    Carlson J; Armstrong B; Switzer RC; Ellison G
    Neuropharmacology; 2000 Oct; 39(13):2792-8. PubMed ID: 11044749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulant-induced psychosis, the dopamine theory of schizophrenia, and the habenula.
    Ellison G
    Brain Res Brain Res Rev; 1994 May; 19(2):223-39. PubMed ID: 7914793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nicotine produces selective degeneration in the medial habenula and fasciculus retroflexus.
    Carlson J; Noguchi K; Ellison G
    Brain Res; 2001 Jul; 906(1-2):127-34. PubMed ID: 11430869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissimilar patterns of degeneration in brain following four different addictive stimulants.
    Ellison G; Switzer RC
    Neuroreport; 1993 Oct; 5(1):17-20. PubMed ID: 8280852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neurotoxic effects of continuous cocaine and amphetamine in Habenula: implications for the substrates of psychosis.
    Ellison G; Irwin S; Keys A; Noguchi K; Sulur G
    NIDA Res Monogr; 1996; 163():117-45. PubMed ID: 8809856
    [No Abstract]   [Full Text] [Related]  

  • 7. Continuous amphetamine and cocaine have similar neurotoxic effects in lateral habenular nucleus and fasciculus retroflexus.
    Ellison G
    Brain Res; 1992 Dec; 598(1-2):353-6. PubMed ID: 1486500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurodegeneration of lateral habenula efferent fibers after intermittent cocaine administration: implications for deep brain stimulation.
    Lax E; Friedman A; Croitoru O; Sudai E; Ben-Moshe H; Redlus L; Sasson E; Blumenfeld-Katzir T; Assaf Y; Yadid G
    Neuropharmacology; 2013 Dec; 75():246-54. PubMed ID: 23891640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cocaine-induced changes in glutamate and GABA immunolabeling within rat habenula and nucleus accumbens.
    Meshul CK; Noguchi K; Emre N; Ellison G
    Synapse; 1998 Oct; 30(2):211-20. PubMed ID: 9723791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lesions of the lateral habenula dissociate the reward-enhancing and locomotor-stimulant effects of amphetamine.
    Gifuni AJ; Jozaghi S; Gauthier-Lamer AC; Boye SM
    Neuropharmacology; 2012 Nov; 63(6):945-57. PubMed ID: 22842070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurochemical correlates of nicotine neurotoxicity on rat habenulo-interpeduncular cholinergic neurons.
    Ciani E; Severi S; Bartesaghi R; Contestabile A
    Neurotoxicology; 2005 Jun; 26(3):467-74. PubMed ID: 15935216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased excitability of lateral habenula neurons in adolescent rats following cocaine self-administration.
    Neumann PA; Ishikawa M; Otaka M; Huang YH; Schlüter OM; Dong Y
    Int J Neuropsychopharmacol; 2014 Dec; 18(6):. PubMed ID: 25548105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. No facilitation of amphetamine- or cocaine-induced hyperactivity in adult rats after various 192 IgG-saporin lesions in the basal forebrain.
    Jeltsch H; Lazarus C; Cosquer B; Galani R; Cassel JC
    Brain Res; 2004 Dec; 1029(2):259-71. PubMed ID: 15542081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prenatal cocaine produces signs of neurodegeneration in the lateral habenula.
    Murphy CA; Ghazi L; Kokabi A; Ellison G
    Brain Res; 1999 Dec; 851(1-2):175-82. PubMed ID: 10642841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Naltrexone maintenance fails to alter amphetamine effects on intracranial self-stimulation in rats.
    Sakloth F; Negus SS
    Exp Clin Psychopharmacol; 2018 Apr; 26(2):195-204. PubMed ID: 29528663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex.
    Ikemoto S
    Brain Res Rev; 2007 Nov; 56(1):27-78. PubMed ID: 17574681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cocaine and nicotine research illustrates a range of hypocretin mechanisms in addiction.
    Baimel C; Borgland SL; Corrigall W
    Vitam Horm; 2012; 89():291-313. PubMed ID: 22640620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repeated intermittent administration of psychomotor stimulant drugs alters the acquisition of Pavlovian approach behavior in rats: differential effects of cocaine, d-amphetamine and 3,4- methylenedioxymethamphetamine ("Ecstasy").
    Taylor JR; Jentsch JD
    Biol Psychiatry; 2001 Jul; 50(2):137-43. PubMed ID: 11526995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial dysfunction and caspase activation in rat cortical neurons treated with cocaine or amphetamine.
    Cunha-Oliveira T; Rego AC; Cardoso SM; Borges F; Swerdlow RH; Macedo T; de Oliveira CR
    Brain Res; 2006 May; 1089(1):44-54. PubMed ID: 16638611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated miRNA-mRNA analysis in the habenula nuclei of mice intravenously self-administering nicotine.
    Lee S; Woo J; Kim YS; Im HI
    Sci Rep; 2015 Aug; 5():12909. PubMed ID: 26260614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.