BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 12126951)

  • 1. Cellular and cytoskeletal dynamics within organ cultures of porcine neuroretina.
    Winkler J; Hagelstein S; Rohde M; Laqua H
    Exp Eye Res; 2002 Jun; 74(6):777-88. PubMed ID: 12126951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the organization and expression of cytoskeletal proteins during retinal degeneration induced by retinal detachment.
    Lewis GP; Matsumoto B; Fisher SK
    Invest Ophthalmol Vis Sci; 1995 Nov; 36(12):2404-16. PubMed ID: 7591630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The retinal organ culture--a model system for the examination of the early cytoskeletal reaction pattern after retinal detachment].
    Winkler J; Hoerauf H
    Klin Monbl Augenheilkd; 2008 Apr; 225(4):269-75. PubMed ID: 18401792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fate of Müller's glia following experimental retinal detachment: nuclear migration, cell division, and subretinal glial scar formation.
    Lewis GP; Chapin EA; Luna G; Linberg KA; Fisher SK
    Mol Vis; 2010 Jul; 16():1361-72. PubMed ID: 20664798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time course modifications in organotypic culture of human neuroretina.
    Fernandez-Bueno I; Fernández-Sánchez L; Gayoso MJ; García-Gutierrez MT; Pastor JC; Cuenca N
    Exp Eye Res; 2012 Nov; 104():26-38. PubMed ID: 23022403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glial fibrillary acidic protein increases in Müller cells after retinal detachment.
    Erickson PA; Fisher SK; Guérin CJ; Anderson DH; Kaska DD
    Exp Eye Res; 1987 Jan; 44(1):37-48. PubMed ID: 3549345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glial cell reactivity in a porcine model of retinal detachment.
    Iandiev I; Uckermann O; Pannicke T; Wurm A; Tenckhoff S; Pietsch UC; Reichenbach A; Wiedemann P; Bringmann A; Uhlmann S
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2161-71. PubMed ID: 16639028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture.
    Uva BM; Masini MA; Sturla M; Prato P; Passalacqua M; Giuliani M; Tagliafierro G; Strollo F
    Brain Res; 2002 May; 934(2):132-9. PubMed ID: 11955476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Müller cell outgrowth after retinal detachment: association with cone photoreceptors.
    Lewis GP; Fisher SK
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1542-5. PubMed ID: 10798674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental retinal detachment in the cone-dominant ground squirrel retina: morphology and basic immunocytochemistry.
    Linberg KA; Sakai T; Lewis GP; Fisher SK
    Vis Neurosci; 2002; 19(5):603-19. PubMed ID: 12507327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The teleost cone cytoskeleton. Localization of actin, microtubules, and intermediate filaments.
    Nagle BW; Okamoto C; Taggart B; Burnside B
    Invest Ophthalmol Vis Sci; 1986 May; 27(5):689-701. PubMed ID: 3700018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Müller cell disruption on mouse photoreceptor cell development.
    Rich KA; Figueroa SL; Zhan Y; Blanks JC
    Exp Eye Res; 1995 Aug; 61(2):235-48. PubMed ID: 7556487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glial remodeling and neural plasticity in human retinal detachment with proliferative vitreoretinopathy.
    Sethi CS; Lewis GP; Fisher SK; Leitner WP; Mann DL; Luthert PJ; Charteris DG
    Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):329-42. PubMed ID: 15623793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Müller and macrophage-like cell interactions in an organotypic culture of porcine neuroretina.
    Fernandez-Bueno I; Pastor JC; Gayoso MJ; Alcalde I; Garcia MT
    Mol Vis; 2008; 14():2148-56. PubMed ID: 19052655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antigenic changes of rabbit retinal Müller cells in culture.
    McGillem GS; Guidry C; Dacheux RF
    Invest Ophthalmol Vis Sci; 1998 Jul; 39(8):1453-61. PubMed ID: 9660494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of actin and tubulin in developing and adult mammalian photoreceptors.
    Woodford BJ; Blanks JC
    Cell Tissue Res; 1989 Jun; 256(3):495-505. PubMed ID: 2743391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different aspects of gliosis in retinal Muller glia can be induced by CNTF, insulin, and FGF2 in the absence of damage.
    Fischer AJ; Omar G; Eubanks J; McGuire CR; Dierks BD; Reh TA
    Mol Vis; 2004 Dec; 10():973-86. PubMed ID: 15623987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subretinal Glial Membranes in Eyes With Geographic Atrophy.
    Edwards MM; McLeod DS; Bhutto IA; Grebe R; Duffy M; Lutty GA
    Invest Ophthalmol Vis Sci; 2017 Mar; 58(3):1352-1367. PubMed ID: 28249091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin.
    Nakazawa T; Takeda M; Lewis GP; Cho KS; Jiao J; Wilhelmsson U; Fisher SK; Pekny M; Chen DF; Miller JW
    Invest Ophthalmol Vis Sci; 2007 Jun; 48(6):2760-8. PubMed ID: 17525210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Citrullination of glial intermediate filaments is an early response in retinal injury.
    Wizeman JW; Nicholas AP; Ishigami A; Mohan R
    Mol Vis; 2016; 22():1137-1155. PubMed ID: 27703308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.