These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12127765)

  • 1. Distinguishing the ORFs from the ELFs: short bacterial genes and the annotation of genomes.
    Ochman H
    Trends Genet; 2002 Jul; 18(7):335-7. PubMed ID: 12127765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A "polyORFomic" analysis of prokaryote genomes using disabled-homology filtering reveals conserved but undiscovered short ORFs.
    Harrison PM; Carriero N; Liu Y; Gerstein M
    J Mol Biol; 2003 Nov; 333(5):885-92. PubMed ID: 14583187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similarity-based gene detection: using COGs to find evolutionarily-conserved ORFs.
    Powell BC; Hutchison CA
    BMC Bioinformatics; 2006 Jan; 7():31. PubMed ID: 16423288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional slippage in bacteria: distribution in sequenced genomes and utilization in IS element gene expression.
    Baranov PV; Hammer AW; Zhou J; Gesteland RF; Atkins JF
    Genome Biol; 2005; 6(3):R25. PubMed ID: 15774026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identify protein-coding genes in the genomes of Aeropyrum pernix K1 and Chlorobium tepidum TLS.
    Guo FB; Lin Y
    J Biomol Struct Dyn; 2009 Feb; 26(4):413-20. PubMed ID: 19108580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. When ELFs are ORFs, but don't act like them.
    Lawrence J
    Trends Genet; 2003 Mar; 19(3):131-2. PubMed ID: 12615005
    [No Abstract]   [Full Text] [Related]  

  • 7. Reannotation of hypothetical ORFs in plant pathogen Erwinia carotovora subsp. atroseptica SCRI1043.
    Chen LL; Ma BG; Gao N
    FEBS J; 2008 Jan; 275(1):198-206. PubMed ID: 18067578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale, multi-genome analysis of alternate open reading frames in bacteria and archaea.
    Veloso F; Riadi G; Aliaga D; Lieph R; Holmes DS
    OMICS; 2005; 9(1):91-105. PubMed ID: 15805780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of the genomes of the bacteria Mycoplasma pneumoniae and Mycoplasma genitalium.
    Himmelreich R; Plagens H; Hilbert H; Reiner B; Herrmann R
    Nucleic Acids Res; 1997 Feb; 25(4):701-12. PubMed ID: 9016618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining diverse evidence for gene recognition in completely sequenced bacterial genomes.
    Frishman D; Mironov A; Mewes HW; Gelfand M
    Nucleic Acids Res; 1998 Jun; 26(12):2941-7. PubMed ID: 9611239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poorly conserved ORFs in the genome of the archaea Halobacterium sp. NRC-1 correspond to expressed proteins.
    Shmuely H; Dinitz E; Dahan I; Eichler J; Fischer D; Shaanan B
    Bioinformatics; 2004 May; 20(8):1248-53. PubMed ID: 14871864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting statistical properties of open reading frames in bacterial genomes.
    Mir K; Neuhaus K; Scherer S; Bossert M; Schober S
    PLoS One; 2012; 7(9):e45103. PubMed ID: 23028785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene recognition from questionable ORFs in bacterial and archaeal genomes.
    Chen LL; Zhang CT
    J Biomol Struct Dyn; 2003 Aug; 21(1):99-109. PubMed ID: 12854962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. REPARATION: ribosome profiling assisted (re-)annotation of bacterial genomes.
    Ndah E; Jonckheere V; Giess A; Valen E; Menschaert G; Van Damme P
    Nucleic Acids Res; 2017 Nov; 45(20):e168. PubMed ID: 28977509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distributional profiles of homologous open reading frames among bacterial phyla: implications for vertical and lateral transmission.
    Ragan MA; Charlebois RL
    Int J Syst Evol Microbiol; 2002 May; 52(Pt 3):777-787. PubMed ID: 12054238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reannotation of Shewanella oneidensis genome.
    Daraselia N; Dernovoy D; Tian Y; Borodovsky M; Tatusov R; Tatusova T
    OMICS; 2003; 7(2):171-5. PubMed ID: 14506846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Re-annotation of protein-coding genes in 10 complete genomes of Neisseriaceae family by combining similarity-based and composition-based methods.
    Guo FB; Xiong L; Teng JL; Yuen KY; Lau SK; Woo PC
    DNA Res; 2013 Jun; 20(3):273-86. PubMed ID: 23571676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How incorrect annotations evolve--the case of short ORFs.
    Linial M
    Trends Biotechnol; 2003 Jul; 21(7):298-300. PubMed ID: 12837613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrative strategy to identify the entire protein coding potential of prokaryotic genomes by proteogenomics.
    Omasits U; Varadarajan AR; Schmid M; Goetze S; Melidis D; Bourqui M; Nikolayeva O; Québatte M; Patrignani A; Dehio C; Frey JE; Robinson MD; Wollscheid B; Ahrens CH
    Genome Res; 2017 Dec; 27(12):2083-2095. PubMed ID: 29141959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Common and phylogenetically widespread coding for peptides by bacterial small RNAs.
    Friedman RC; Kalkhof S; Doppelt-Azeroual O; Mueller SA; Chovancová M; von Bergen M; Schwikowski B
    BMC Genomics; 2017 Jul; 18(1):553. PubMed ID: 28732463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.