BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 12128192)

  • 1. Effects of inert volume-excluding macromolecules on protein fiber formation. I. Equilibrium models.
    Hall D; Minton AP
    Biophys Chem; 2002 Jul; 98(1-2):93-104. PubMed ID: 12128192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of inert volume-excluding macromolecules on protein fiber formation. II. Kinetic models for nucleated fiber growth.
    Hall D; Minton AP
    Biophys Chem; 2004 Feb; 107(3):299-316. PubMed ID: 14967245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyses of thermodynamic data for concentrated hemoglobin solutions using scaled particle theory: implications for a simple two-state model of water in thermodynamic analyses of crowding in vitro and in vivo.
    Guttman HJ; Anderson CF; Record MT
    Biophys J; 1995 Mar; 68(3):835-46. PubMed ID: 7756551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of macromolecular crowding on thermodynamic activity: solubility and dimerization constants for spherical and dumbbell-shaped molecules in a hard-sphere mixture.
    Berg OG
    Biopolymers; 1990; 30(11-12):1027-37. PubMed ID: 2081264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of a concentrated "inert" macromolecular cosolute on the stability of a globular protein with respect to denaturation by heat and by chaotropes: a statistical-thermodynamic model.
    Minton AP
    Biophys J; 2000 Jan; 78(1):101-9. PubMed ID: 10620277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crowding effects on protein association: effect of interactions between crowding agents.
    Kim JS; Yethiraj A
    J Phys Chem B; 2011 Jan; 115(2):347-53. PubMed ID: 21166404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Models for excluded volume interaction between an unfolded protein and rigid macromolecular cosolutes: macromolecular crowding and protein stability revisited.
    Minton AP
    Biophys J; 2005 Feb; 88(2):971-85. PubMed ID: 15596487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular diffusion in crowded solutions.
    Han J; Herzfeld J
    Biophys J; 1993 Sep; 65(3):1155-61. PubMed ID: 8241395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of macromolecular crowding on biochemical reaction equilibria: a molecular thermodynamic perspective.
    Hu Z; Jiang J; Rajagopalan R
    Biophys J; 2007 Sep; 93(5):1464-73. PubMed ID: 17513384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of protein self-association under conditions of the thermodynamic non-ideality.
    Behlke J; Ristau O
    Biophys Chem; 2000 Sep; 87(1):1-13. PubMed ID: 11036965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of thermodynamic non-ideality in terms of protein solvation.
    Winzor DJ; Carrington LE; Harding SE
    Biophys Chem; 2001 Nov; 93(2-3):231-40. PubMed ID: 11804728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein self-association induced by macromolecular crowding: a quantitative analysis by magnetic relaxation dispersion.
    Snoussi K; Halle B
    Biophys J; 2005 Apr; 88(4):2855-66. PubMed ID: 15665132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of globular proteins on locally planar surfaces: models for the effect of excluded surface area and aggregation of adsorbed protein on adsorption equilibria.
    Chatelier RC; Minton AP
    Biophys J; 1996 Nov; 71(5):2367-74. PubMed ID: 8913577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of globular proteins on locally planar surfaces. II. Models for the effect of multiple adsorbate conformations on adsorption equilibria and kinetics.
    Minton AP
    Biophys J; 1999 Jan; 76(1 Pt 1):176-87. PubMed ID: 9876132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The application of size exclusion chromatography and computer simulation to study the thermodynamic and kinetic parameters for short-lived dissociable protein aggregates.
    Patapoff TW; Mrsny RJ; Lee WA
    Anal Biochem; 1993 Jul; 212(1):71-8. PubMed ID: 8368518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allowance for the effect of protein charge in the characterization of nonideal solute self-association by sedimentation equilibrium.
    Scott DJ; Wills PR; Winzor DJ
    Biophys Chem; 2010 Jul; 149(3):83-91. PubMed ID: 20444536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular crowding: obvious but underappreciated.
    Ellis RJ
    Trends Biochem Sci; 2001 Oct; 26(10):597-604. PubMed ID: 11590012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of thermodynamic nonideality on the subcellular distribution of enzymes: adsorption of aldolase to muscle myofibrils.
    Harris SJ; Winzor DJ
    Arch Biochem Biophys; 1985 Dec; 243(2):598-604. PubMed ID: 4083904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of the enhancement of noncooperative protein self-assembly by macromolecular crowding: indefinite linear self-association of bacterial cell division protein FtsZ.
    Rivas G; Fernández JA; Minton AP
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3150-5. PubMed ID: 11248047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of interstitial fraction and load conditions on the dynamic binding capacity of proteins on capillary-channeled polymer fiber columns.
    Wang Z; Marcus RK
    Biotechnol Prog; 2015; 31(1):97-109. PubMed ID: 25378292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.