These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 12130653)

  • 1. Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter's) knockout mice.
    Lu M; Wang T; Yan Q; Yang X; Dong K; Knepper MA; Wang W; Giebisch G; Shull GE; Hebert SC
    J Biol Chem; 2002 Oct; 277(40):37881-7. PubMed ID: 12130653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal outer medullary potassium channel knockout models reveal thick ascending limb function and dysfunction.
    Wang T
    Clin Exp Nephrol; 2012 Feb; 16(1):49-54. PubMed ID: 22038261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of Type II Bartter's syndrome and in adaptation to a high-K diet.
    Bailey MA; Cantone A; Yan Q; MacGregor GG; Leng Q; Amorim JB; Wang T; Hebert SC; Giebisch G; Malnic G
    Kidney Int; 2006 Jul; 70(1):51-9. PubMed ID: 16710355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ROMK is required for expression of the 70-pS K channel in the thick ascending limb.
    Lu M; Wang T; Yan Q; Wang W; Giebisch G; Hebert SC
    Am J Physiol Renal Physiol; 2004 Mar; 286(3):F490-5. PubMed ID: 14600033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mouse model of type II Bartter's syndrome. II. Altered expression of renal sodium- and water-transporting proteins.
    Wagner CA; Loffing-Cueni D; Yan Q; Schulz N; Fakitsas P; Carrel M; Wang T; Verrey F; Geibel JP; Giebisch G; Hebert SC; Loffing J
    Am J Physiol Renal Physiol; 2008 Jun; 294(6):F1373-80. PubMed ID: 18322017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mouse model of type II Bartter's syndrome. I. Upregulation of thiazide-sensitive Na-Cl cotransport activity.
    Cantone A; Yang X; Yan Q; Giebisch G; Hebert SC; Wang T
    Am J Physiol Renal Physiol; 2008 Jun; 294(6):F1366-72. PubMed ID: 18385266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired renal NaCl absorption in mice lacking the ROMK potassium channel, a model for type II Bartter's syndrome.
    Lorenz JN; Baird NR; Judd LM; Noonan WT; Andringa A; Doetschman T; Manning PA; Liu LH; Miller ML; Shull GE
    J Biol Chem; 2002 Oct; 277(40):37871-80. PubMed ID: 12122007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Romk1 Knockout Mice Do Not Produce Bartter Phenotype but Exhibit Impaired K Excretion.
    Dong K; Yan Q; Lu M; Wan L; Hu H; Guo J; Boulpaep E; Wang W; Giebisch G; Hebert SC; Wang T
    J Biol Chem; 2016 Mar; 291(10):5259-69. PubMed ID: 26728465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of the ROMK potassium channel to the apical membrane of distal nephron in rat kidney.
    Kohda Y; Ding W; Phan E; Housini I; Wang J; Star RA; Huang CL
    Kidney Int; 1998 Oct; 54(4):1214-23. PubMed ID: 9767537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of the ROMK protein on apical membranes of rat kidney nephron segments.
    Xu JZ; Hall AE; Peterson LN; Bienkowski MJ; Eessalu TE; Hebert SC
    Am J Physiol; 1997 Nov; 273(5):F739-48. PubMed ID: 9374837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK.
    Simon DB; Karet FE; Rodriguez-Soriano J; Hamdan JH; DiPietro A; Trachtman H; Sanjad SA; Lifton RP
    Nat Genet; 1996 Oct; 14(2):152-6. PubMed ID: 8841184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decrease in dietary K intake stimulates the generation of superoxide anions in the kidney and inhibits K secretory channels in the CCD.
    Wang ZJ; Sun P; Xing W; Pan C; Lin DH; Wang WH
    Am J Physiol Renal Physiol; 2010 Jun; 298(6):F1515-22. PubMed ID: 20357031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein tyrosine kinase is expressed and regulates ROMK1 location in the cortical collecting duct.
    Lin DH; Sterling H; Yang B; Hebert SC; Giebisch G; Wang WH
    Am J Physiol Renal Physiol; 2004 May; 286(5):F881-92. PubMed ID: 15075184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal potassium channels: recent developments.
    Wang W
    Curr Opin Nephrol Hypertens; 2004 Sep; 13(5):549-55. PubMed ID: 15300162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental expression of ROMK in rat kidney.
    Zolotnitskaya A; Satlin LM
    Am J Physiol; 1999 Jun; 276(6):F825-36. PubMed ID: 10362771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the ROMK channel: interaction of the ROMK with associate proteins.
    Wang W
    Am J Physiol; 1999 Dec; 277(6):F826-31. PubMed ID: 10600928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolyzable ATP and PIP(2) modulate the small-conductance K+ channel in apical membranes of rat cortical-collecting duct (CCD).
    Lu M; Hebert SC; Giebisch G
    J Gen Physiol; 2002 Nov; 120(5):603-15. PubMed ID: 12407074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kidney-specific WNK1 regulates sodium reabsorption and potassium secretion in mouse cortical collecting duct.
    Cheng CJ; Baum M; Huang CL
    Am J Physiol Renal Physiol; 2013 Feb; 304(4):F397-402. PubMed ID: 23195681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel.
    Woda CB; Bragin A; Kleyman TR; Satlin LM
    Am J Physiol Renal Physiol; 2001 May; 280(5):F786-93. PubMed ID: 11292620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of ROMK channels in the rat kidney.
    Mennitt PA; Wade JB; Ecelbarger CA; Palmer LG; Frindt G
    J Am Soc Nephrol; 1997 Dec; 8(12):1823-30. PubMed ID: 9402083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.