BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 12132308)

  • 21. Static frictional force and surface roughness of nickel-titanium arch wires.
    Prososki RR; Bagby MD; Erickson LC
    Am J Orthod Dentofacial Orthop; 1991 Oct; 100(4):341-8. PubMed ID: 1927985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A study of frictional forces between orthodontic brackets and archwires.
    Downing A; McCabe J; Gordon P
    Br J Orthod; 1994 Nov; 21(4):349-57. PubMed ID: 7857894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of kinetic friction between regular and colored titanium molybdenum alloy archwires.
    Alexander L; Kommi PB; Arani N; Hanumanth S; Vijay Kumar V; Sabapathy RS
    Indian J Dent Res; 2018; 29(2):212-216. PubMed ID: 29652017
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the coatings covering esthetic orthodontic archwires and their influence on the bending and frictional properties.
    Muguruma T; Iijima M; Yuasa T; Kawaguchi K; Mizoguchi I
    Angle Orthod; 2017 Jul; 87(4):610-617. PubMed ID: 27731649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical properties of coated superelastic archwires in conventional and self-ligating orthodontic brackets.
    Elayyan F; Silikas N; Bearn D
    Am J Orthod Dentofacial Orthop; 2010 Feb; 137(2):213-7. PubMed ID: 20152677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stiffness and frictional resistance of a superelastic nickel-titanium orthodontic wire with low-stress hysteresis.
    Liaw YC; Su YY; Lai YL; Lee SY
    Am J Orthod Dentofacial Orthop; 2007 May; 131(5):578.e12-8. PubMed ID: 17482074
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of surface roughness of orthodontic wires by means of atomic force microscopy.
    D'Antò V; Rongo R; Ametrano G; Spagnuolo G; Manzo P; Martina R; Paduano S; Valletta R
    Angle Orthod; 2012 Sep; 82(5):922-8. PubMed ID: 22339276
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Frictional resistances using Teflon-coated ligatures with various bracket-archwire combinations.
    De Franco DJ; Spiller RE; von Fraunhofer JA
    Angle Orthod; 1995; 65(1):63-72; discussion 73-4. PubMed ID: 7726464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface characteristics of retrieved coated and nickel-titanium orthodontic archwires.
    Zegan G; Sodor A; Munteanu C
    Rom J Morphol Embryol; 2012; 53(4):935-9. PubMed ID: 23303016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparative study of the static and kinetic frictional resistance of titanium molybdenum alloy archwires in stainless steel brackets.
    Cash A; Curtis R; Garrigia-Majo D; McDonald F
    Eur J Orthod; 2004 Feb; 26(1):105-11. PubMed ID: 14994890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Static frictional force and surface roughness of various bracket and wire combinations.
    Doshi UH; Bhad-Patil WA
    Am J Orthod Dentofacial Orthop; 2011 Jan; 139(1):74-9. PubMed ID: 21195280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of the vertical position of the canine on the frictional/orthodontic force ratio of Ni-Ti archwires during the levelling phase of orthodontic treatment.
    Kato M; Namura Y; Yoneyama T; Shimizu N
    J Oral Sci; 2018 Sep; 60(3):336-343. PubMed ID: 29848889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of stress and phase on corrosion of a superelastic nickel-titanium orthodontic wire.
    Segal N; Hell J; Berzins DW
    Am J Orthod Dentofacial Orthop; 2009 Jun; 135(6):764-70. PubMed ID: 19524836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relative kinetic frictional forces between sintered stainless steel brackets and orthodontic wires.
    Vaughan JL; Duncanson MG; Nanda RS; Currier GF
    Am J Orthod Dentofacial Orthop; 1995 Jan; 107(1):20-7. PubMed ID: 7817958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical Properties and Potential Clinical Implications of Improved Superelastic Orthodontic Archwires: An Observational Study.
    Srinivasan D; Krishnan RK
    Cureus; 2023 Nov; 15(11):e48334. PubMed ID: 38060728
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Force loss in archwire-guided tooth movement of conventional and self-ligating brackets.
    Montasser MA; El-Bialy T; Keilig L; Reimann S; Jäger A; Bourauel C
    Eur J Orthod; 2014 Feb; 36(1):31-8. PubMed ID: 23382468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The friction and wear patterns of orthodontic brackets and archwires in the dry state.
    Michelberger DJ; Eadie RL; Faulkner MG; Glover KE; Prasad NG; Major PW
    Am J Orthod Dentofacial Orthop; 2000 Dec; 118(6):662-74. PubMed ID: 11113802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frictional forces between lingual brackets and archwires measured by a friction tester.
    Park JH; Lee YK; Lim BS; Kim CW
    Angle Orthod; 2004 Dec; 74(6):816-24. PubMed ID: 15673146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of dental arch convexity and type of archwire on frictional forces.
    Fourie Z; Ozcan M; Sandham A
    Am J Orthod Dentofacial Orthop; 2009 Jul; 136(1):14.e1-7; discussion 14-5. PubMed ID: 19577138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of force loss due to friction of different wire sizes and materials in conventional and new self-ligating orthodontic brackets during simulated canine retraction.
    El-Bialy T; Alobeid A; Dirk C; Jäger A; Keilig L; Bourauel C
    J Orofac Orthop; 2019 Mar; 80(2):68-78. PubMed ID: 30758513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.