These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12132435)

  • 1. Influence of rapid changes in cytosolic pH on oxidative phosphorylation in skeletal muscle: theoretical studies.
    Korzeniewski B; Zoladz JA
    Biochem J; 2002 Jul; 365(Pt 1):249-58. PubMed ID: 12132435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.
    Korzeniewski B; Zoladz JA
    Biochem J; 2004 May; 379(Pt 3):703-10. PubMed ID: 14744260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of oxidative phosphorylation in mammalian skeletal muscle.
    Korzeniewski B; Zoladz JA
    Biophys Chem; 2001 Aug; 92(1-2):17-34. PubMed ID: 11527576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle.
    Korzeniewski B; Liguzinski P
    Biophys Chem; 2004 Jul; 110(1-2):147-69. PubMed ID: 15223151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible mechanisms underlying slow component of V̇O2 on-kinetics in skeletal muscle.
    Korzeniewski B; Zoladz JA
    J Appl Physiol (1985); 2015 May; 118(10):1240-9. PubMed ID: 25767031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Each-step activation of oxidative phosphorylation is necessary to explain muscle metabolic kinetic responses to exercise and recovery in humans.
    Korzeniewski B; Rossiter HB
    J Physiol; 2015 Dec; 593(24):5255-68. PubMed ID: 26503399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of oxidative phosphorylation in different muscles and various experimental conditions.
    Korzeniewski B
    Biochem J; 2003 Nov; 375(Pt 3):799-804. PubMed ID: 12901719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interrelations of ATP synthesis and proton handling in ischaemically exercising human forearm muscle studied by 31P magnetic resonance spectroscopy.
    Kemp GJ; Roussel M; Bendahan D; Le Fur Y; Cozzone PJ
    J Physiol; 2001 Sep; 535(Pt 3):901-28. PubMed ID: 11559784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation.
    Korzeniewski B
    J Appl Physiol (1985); 2016 Aug; 121(2):424-37. PubMed ID: 27283913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical background of the VO2 on-kinetics in skeletal muscles.
    Korzeniewski B; Zoladz JA
    J Physiol Sci; 2006 Feb; 56(1):1-12. PubMed ID: 16779908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced cytosolic acidification during exercise suggests defective glycolytic activity in skeletal muscle of patients with Becker muscular dystrophy. An in vivo 31P magnetic resonance spectroscopy study.
    Lodi R; Kemp GJ; Muntoni F; Thompson CH; Rae C; Taylor J; Styles P; Taylor DJ
    Brain; 1999 Jan; 122 ( Pt 1)():121-30. PubMed ID: 10050900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear relation between time constant of oxygen uptake kinetics, total creatine, and mitochondrial content in vitro.
    Glancy B; Barstow T; Willis WT
    Am J Physiol Cell Physiol; 2008 Jan; 294(1):C79-87. PubMed ID: 17942641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies.
    Li Y; Dash RK; Kim J; Saidel GM; Cabrera ME
    Am J Physiol Cell Physiol; 2009 Jan; 296(1):C25-46. PubMed ID: 18829894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related changes in ATP-producing pathways in human skeletal muscle in vivo.
    Lanza IR; Befroy DE; Kent-Braun JA
    J Appl Physiol (1985); 2005 Nov; 99(5):1736-44. PubMed ID: 16002769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of mitochondrial ATP synthesis and the creatine kinase equilibrium in skeletal muscle.
    Kemp GJ
    J Theor Biol; 1994 Oct; 170(3):239-46. PubMed ID: 7996853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The electrochemical transmission in I-Band segments of the mitochondrial reticulum.
    Patel KD; Glancy B; Balaban RS
    Biochim Biophys Acta; 2016 Aug; 1857(8):1284-1289. PubMed ID: 26921810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.
    Zoladz JA; Korzeniewski B; Grassi B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():67-84. PubMed ID: 17242492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of ATP supply during muscle contraction: theoretical studies.
    Korzeniewski B
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1189-95. PubMed ID: 9494084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycolysis is independent of oxygenation state in stimulated human skeletal muscle in vivo.
    Conley KE; Kushmerick MJ; Jubrias SA
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):935-45. PubMed ID: 9714871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.