These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Structural basis of inhibition of cysteine proteases by E-64 and its derivatives. Matsumoto K; Mizoue K; Kitamura K; Tse WC; Huber CP; Ishida T Biopolymers; 1999; 51(1):99-107. PubMed ID: 10380357 [TBL] [Abstract][Full Text] [Related]
3. Computational approaches for the discovery of cysteine protease inhibitors against malaria and SARS. Shah F; Mukherjee P; Desai P; Avery M Curr Comput Aided Drug Des; 2010 Mar; 6(1):1-23. PubMed ID: 20370692 [TBL] [Abstract][Full Text] [Related]
4. Recent advances in the synthesis, design and selection of cysteine protease inhibitors. Hernandez AA; Roush WR Curr Opin Chem Biol; 2002 Aug; 6(4):459-65. PubMed ID: 12133721 [TBL] [Abstract][Full Text] [Related]
5. Binding modes of a new epoxysuccinyl-peptide inhibitor of cysteine proteases. Where and how do cysteine proteases express their selectivity? Czaplewski C; Grzonka Z; Jaskólski M; Kasprzykowski F; Kozak M; Politowska E; Ciarkowski J Biochim Biophys Acta; 1999 May; 1431(2):290-305. PubMed ID: 10350606 [TBL] [Abstract][Full Text] [Related]
6. Cysteine protease inhibitors: from evolutionary relationships to modern chemotherapeutic design for the treatment of infectious diseases. Toh EC; Huq NL; Dashper SG; Reynolds EC Curr Protein Pept Sci; 2010 Dec; 11(8):725-43. PubMed ID: 21235508 [TBL] [Abstract][Full Text] [Related]
7. Development of alpha-keto-based inhibitors of cruzain, a cysteine protease implicated in Chagas disease. Choe Y; Brinen LS; Price MS; Engel JC; Lange M; Grisostomi C; Weston SG; Pallai PV; Cheng H; Hardy LW; Hartsough DS; McMakin M; Tilton RF; Baldino CM; Craik CS Bioorg Med Chem; 2005 Mar; 13(6):2141-56. PubMed ID: 15727867 [TBL] [Abstract][Full Text] [Related]
8. The Bsmoc group as a novel scaffold for the design of irreversible inhibitors of cysteine proteases. Iley J; Moreira R; Martins L; Guedes RC; Soares CM Bioorg Med Chem Lett; 2006 May; 16(10):2738-41. PubMed ID: 16503139 [TBL] [Abstract][Full Text] [Related]
9. Identification of novel malarial cysteine protease inhibitors using structure-based virtual screening of a focused cysteine protease inhibitor library. Shah F; Mukherjee P; Gut J; Legac J; Rosenthal PJ; Tekwani BL; Avery MA J Chem Inf Model; 2011 Apr; 51(4):852-64. PubMed ID: 21428453 [TBL] [Abstract][Full Text] [Related]
10. Use of papain as a model for the structure-based design of cathepsin K inhibitors: crystal structures of two papain-inhibitor complexes demonstrate binding to S'-subsites. LaLonde JM; Zhao B; Smith WW; Janson CA; DesJarlais RL; Tomaszek TA; Carr TJ; Thompson SK; Oh HJ; Yamashita DS; Veber DF; Abdel-Meguid SS J Med Chem; 1998 Nov; 41(23):4567-76. PubMed ID: 9804696 [TBL] [Abstract][Full Text] [Related]
11. Structure-based design and synthesis of macrocyclic human rhinovirus 3C protease inhibitors. Namoto K; Sirockin F; Sellner H; Wiesmann C; Villard F; Moreau RJ; Valeur E; Paulding SC; Schleeger S; Schipp K; Loup J; Andrews L; Swale R; Robinson M; Farady CJ Bioorg Med Chem Lett; 2018 Mar; 28(5):906-909. PubMed ID: 29433930 [TBL] [Abstract][Full Text] [Related]
12. Experimental study and computational modelling of cruzain cysteine protease inhibition by dipeptidyl nitriles. Dos Santos AM; Cianni L; De Vita D; Rosini F; Leitão A; Laughton CA; Lameira J; Montanari CA Phys Chem Chem Phys; 2018 Sep; 20(37):24317-24328. PubMed ID: 30211406 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of chagasin, the endogenous cysteine-protease inhibitor from Trypanosoma cruzi. Figueiredo da Silva AA; de Carvalho Vieira L; Krieger MA; Goldenberg S; Zanchin NI; Guimarães BG J Struct Biol; 2007 Feb; 157(2):416-23. PubMed ID: 17011790 [TBL] [Abstract][Full Text] [Related]
14. Terpyridine platinum(II) complexes inhibit cysteine proteases by binding to active-site cysteine. Lo YC; Su WC; Ko TP; Wang NC; Wang AH J Biomol Struct Dyn; 2011 Oct; 29(2):267-82. PubMed ID: 21875148 [TBL] [Abstract][Full Text] [Related]
15. Michael acceptors as cysteine protease inhibitors. Santos MM; Moreira R Mini Rev Med Chem; 2007 Oct; 7(10):1040-50. PubMed ID: 17979807 [TBL] [Abstract][Full Text] [Related]
16. Small molecule affinity fingerprinting. A tool for enzyme family subclassification, target identification, and inhibitor design. Greenbaum DC; Arnold WD; Lu F; Hayrapetian L; Baruch A; Krumrine J; Toba S; Chehade K; Brömme D; Kuntz ID; Bogyo M Chem Biol; 2002 Oct; 9(10):1085-94. PubMed ID: 12401493 [TBL] [Abstract][Full Text] [Related]
17. Phenylthiomethyl Ketone-Based Fragments Show Selective and Irreversible Inhibition of Enteroviral 3C Proteases. Schulz R; Atef A; Becker D; Gottschalk F; Tauber C; Wagner S; Arkona C; Abdel-Hafez AA; Farag HH; Rademann J; Wolber G J Med Chem; 2018 Feb; 61(3):1218-1230. PubMed ID: 29328649 [TBL] [Abstract][Full Text] [Related]
18. Theoretical studies of binding modes of two covalent inhibitors of cysteine proteases. Drabik P; Politowska E; Czaplewski C; Kasprzykowski F; Lankiewicz L; Ciarkowski J Acta Biochim Pol; 2000; 47(4):1061-6. PubMed ID: 11996096 [TBL] [Abstract][Full Text] [Related]
19. The 1,4-naphthoquinone scaffold in the design of cysteine protease inhibitors. Valente C; Moreira R; Guedes RC; Iley J; Jaffar M; Douglas KT Bioorg Med Chem; 2007 Aug; 15(15):5340-50. PubMed ID: 17532221 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of the cysteine protease inhibitor 2 from Entamoeba histolytica: functional convergence of a common protein fold. Casados-Vázquez LE; Lara-González S; Brieba LG Gene; 2011 Jan; 471(1-2):45-52. PubMed ID: 20951777 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]