These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 1213336)

  • 21. Monitoring the impact of the Aznalcóllar mining spill on recent sediments from the Guadalquivir estuary, southwest Spain.
    Riba I; DelValls TA; Forja JM; Gómez-Parra A
    Bull Environ Contam Toxicol; 2002 Jul; 69(1):129-38. PubMed ID: 12053267
    [No Abstract]   [Full Text] [Related]  

  • 22. Toxicity and biodegradability of high strength/toxic organic liquid industrial effluents and hazardous landfill leachates.
    Naidoo V; du Preez M; Rakgotho T; Odhav B; Buckley CA
    Water Sci Technol; 2002; 46(9):163-9. PubMed ID: 12448465
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Availability of radium isotopes and heavy metals from scales and tailings of Polish hard coal mining.
    Leopold K; Michalik B; Wiegand J
    J Environ Radioact; 2007; 94(3):137-50. PubMed ID: 17350147
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Dynamics of the content of organochlorine solvents in plants irrigated with industrial effluents].
    Khramova SI; Zhirnov BF
    Gig Sanit; 1973 Jan; 38(1):102-3. PubMed ID: 4697292
    [No Abstract]   [Full Text] [Related]  

  • 25. [Methods of detection of contamination levels of a territory: application to a case of arsenic pollution].
    Zapponi GA; Bianchi E
    Ann Ist Super Sanita; 1980; 16(2):295-315. PubMed ID: 7235438
    [No Abstract]   [Full Text] [Related]  

  • 26. [Sanitary-hygienic evaluation of typical sedimentation tanks used in the coal enterprise of the Kuzbass for purification of mine effluents].
    Lapchenko AIa
    Gig Sanit; 1972 Feb; 37(2):95-6. PubMed ID: 4261435
    [No Abstract]   [Full Text] [Related]  

  • 27. Phytoremediation of coal mine spoil dump through integrated biotechnological approach.
    Juwarkar AA; Jambhulkar HP
    Bioresour Technol; 2008 Jul; 99(11):4732-41. PubMed ID: 17980580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Mine effluents as a nutrient culture base for methane-oxidizing bacteria in the microbiological method of decreasing the methane content of coal].
    Kurdish IK; Khenkina LM; Bavina EN; Malashenko IuR
    Mikrobiol Zh (1978); 1980; 42(4):420-7. PubMed ID: 6447831
    [No Abstract]   [Full Text] [Related]  

  • 29. Metal and organic matter contents in a combined household and industrial landfill.
    Ostman M; Wahlberg O; Gren S; Mårtensson A
    Waste Manag; 2006; 26(1):29-40. PubMed ID: 16287598
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Hygienic characteristics of working conditions of workers in coal-processing and present-day coke-producing plants].
    Rudnev AS; Vankhanen VD; Kovalenko AA
    Gig Tr Prof Zabol; 1988 May; (5):36-8. PubMed ID: 3417160
    [No Abstract]   [Full Text] [Related]  

  • 31. Bioassessment of a combined chemical-biological treatment for synthetic acid mine drainage.
    Pagnanelli F; De Michelis I; Di Muzio S; Ferella F; Vegliò F
    J Hazard Mater; 2008 Nov; 159(2-3):567-73. PubMed ID: 18394799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Four trace elements contents of water environment of mining subsidence in the Huainan diggings, China.
    Yao EQ; Gui HR
    Environ Monit Assess; 2008 Nov; 146(1-3):203-10. PubMed ID: 18046614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Environmental behavior of cement-based stabilized foundry sludge products incorporating additives.
    Ruiz MC; Irabien A
    J Hazard Mater; 2004 Jun; 109(1-3):45-52. PubMed ID: 15177744
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and performance of experimental constructed wetlands treating coke plant effluents.
    Jardinier N; Blake G; Mauchamp A; Merlin G
    Water Sci Technol; 2001; 44(11-12):485-91. PubMed ID: 11804139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Method of determining phenols in coke chemical manufacturing discharges].
    Ozerskiĭ IuG; Akimov IuA; Kabrel'ian SN
    Gig Sanit; 1976 Jan; (1):69-71. PubMed ID: 1261834
    [No Abstract]   [Full Text] [Related]  

  • 36. Copper and nickel speciation in mine effluents by combination of two independent techniques.
    Chakraborty P; Zhao J; Chakrabarti CL
    Anal Chim Acta; 2009 Mar; 636(1):70-6. PubMed ID: 19231358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Species- and stage-specific differences in trace element tissue concentrations in amphibians: implications for the disposal of coal-combustion wastes.
    Roe JH; Hopkins WA; Jackson BP
    Environ Pollut; 2005 Jul; 136(2):353-63. PubMed ID: 15840543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effluent characterization and different modes of reuse in agriculture-a model case study.
    Das M; Kumar A
    Environ Sci Pollut Res Int; 2009 Jun; 16(4):466-73. PubMed ID: 19224260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Use of the gas chromatographic method for environmental analysis (a review of papers from 1978-1980)].
    Iavorovskaia SF
    Gig Tr Prof Zabol; 1981 Oct; (10):35-40. PubMed ID: 7030872
    [No Abstract]   [Full Text] [Related]  

  • 40. [Carcinogenic action of soot extracts and the composition of the aromatic polycyclic hydrocarbons in emissions of the coke chemical industry].
    Linnik AB; Khesina AIa; Chikovani GR
    Eksp Onkol; 1986; 8(2):24-6. PubMed ID: 3634706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.