BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 12133721)

  • 41. Novel peptidyl alpha-keto amide inhibitors of calpains and other cysteine proteases.
    Li Z; Ortega-Vilain AC; Patil GS; Chu DL; Foreman JE; Eveleth DD; Powers JC
    J Med Chem; 1996 Sep; 39(20):4089-98. PubMed ID: 8831774
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of calpain-specific inactivators by screening of positional scanning epoxide libraries.
    Cuerrier D; Moldoveanu T; Campbell RL; Kelly J; Yoruk B; Verhelst SHL; Greenbaum D; Bogyo M; Davies PL
    J Biol Chem; 2007 Mar; 282(13):9600-9611. PubMed ID: 17218315
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis and biological evaluation of chromone carboxamides as calpain inhibitors.
    Lee KS; Seo SH; Lee YH; Kim HD; Son MH; Chung BY; Lee JY; Jin C; Lee YS
    Bioorg Med Chem Lett; 2005 Jun; 15(11):2857-60. PubMed ID: 15911268
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Peptide alpha-keto ester, alpha-keto amide, and alpha-keto acid inhibitors of calpains and other cysteine proteases.
    Li Z; Patil GS; Golubski ZE; Hori H; Tehrani K; Foreman JE; Eveleth DD; Bartus RT; Powers JC
    J Med Chem; 1993 Oct; 36(22):3472-80. PubMed ID: 8230139
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Developments in the design and synthesis of calpain inhibitors.
    Neffe AT; Abell AD
    Curr Opin Drug Discov Devel; 2005 Nov; 8(6):684-700. PubMed ID: 16312145
    [TBL] [Abstract][Full Text] [Related]  

  • 46. General solid-phase method to prepare novel cyclic ketone inhibitors of the cysteine protease cruzain.
    Huang L; Ellman JA
    Bioorg Med Chem Lett; 2002 Oct; 12(20):2993-6. PubMed ID: 12270191
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design and synthesis of 4-aryl-4-oxobutanoic acid amides as calpain inhibitors.
    Zhang Y; Jung SY; Jin C; Kim ND; Gong P; Lee YS
    Bioorg Med Chem Lett; 2009 Jan; 19(2):502-7. PubMed ID: 19041242
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design, synthesis and evaluation of 2,2-dimethyl-1,3-dioxolane derivatives as human rhinovirus 3C protease inhibitors.
    Zhang Q; Cao R; Liu A; Lei S; Li Y; Yang J; Li S; Xiao J
    Bioorg Med Chem Lett; 2017 Sep; 27(17):4061-4065. PubMed ID: 28778471
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis and calpain inhibitory activity of peptidomimetic compounds with constrained amino acids at the P2 position.
    Donkor IO; Korukonda R
    Bioorg Med Chem Lett; 2008 Sep; 18(17):4806-8. PubMed ID: 18694642
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Arylaminoethyl amides as inhibitors of the cysteine protease cathepsin K-investigating P1' substituents.
    Altmann E; Green J; Tintelnot-Blomley M
    Bioorg Med Chem Lett; 2003 Jun; 13(12):1997-2001. PubMed ID: 12781182
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Calpain inhibition: a therapeutic strategy targeting multiple disease states.
    Carragher NO
    Curr Pharm Des; 2006; 12(5):615-38. PubMed ID: 16472152
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tripeptide aldehyde inhibitors of human rhinovirus 3C protease: design, synthesis, biological evaluation, and cocrystal structure solution of P1 glutamine isosteric replacements.
    Webber SE; Okano K; Little TL; Reich SH; Xin Y; Fuhrman SA; Matthews DA; Love RA; Hendrickson TF; Patick AK; Meador JW; Ferre RA; Brown EL; Ford CE; Binford SL; Worland ST
    J Med Chem; 1998 Jul; 41(15):2786-805. PubMed ID: 9667969
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Beta-lactones as a new class of cysteine proteinase inhibitors: inhibition of hepatitis A virus 3C proteinase by N-Cbz-serine beta-lactone.
    Lall MS; Karvellas C; Vederas JC
    Org Lett; 1999 Sep; 1(5):803-6. PubMed ID: 10823207
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 3-Acylamino-azetidin-2-one as a novel class of cysteine proteases inhibitors.
    Zhou NE; Guo D; Thomas G; Reddy AV; Kaleta J; Purisima E; Menard R; Micetich RG; Singh R
    Bioorg Med Chem Lett; 2003 Jan; 13(1):139-41. PubMed ID: 12467634
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rapid optimization of an ICE inhibitor synthesis using multiple reaction conditions in a parallel array.
    Warmus JS; Ryder TR; Hodges JC; Kennedy RM; Brady KD
    Bioorg Med Chem Lett; 1998 Sep; 8(17):2309-14. PubMed ID: 9873533
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design, synthesis and biological evaluation of potent azadipeptide nitrile inhibitors and activity-based probes as promising anti-Trypanosoma brucei agents.
    Yang PY; Wang M; Li L; Wu H; He CY; Yao SQ
    Chemistry; 2012 May; 18(21):6528-41. PubMed ID: 22488888
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Discovery of selective and nonpeptidic cathepsin S inhibitors.
    Irie O; Ehara T; Iwasaki A; Yokokawa F; Sakaki J; Hirao H; Kanazawa T; Teno N; Horiuchi M; Umemura I; Gunji H; Masuya K; Hitomi Y; Iwasaki G; Nonomura K; Tanabe K; Fukaya H; Kosaka T; Snell CR; Hallett A
    Bioorg Med Chem Lett; 2008 Jul; 18(14):3959-62. PubMed ID: 18572405
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Advances in the discovery of cathepsin K inhibitors on bone resorption.
    Lu J; Wang M; Wang Z; Fu Z; Lu A; Zhang G
    J Enzyme Inhib Med Chem; 2018 Dec; 33(1):890-904. PubMed ID: 29723068
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design of potent, selective, and orally bioavailable inhibitors of cysteine protease cathepsin k.
    Tavares FX; Boncek V; Deaton DN; Hassell AM; Long ST; Miller AB; Payne AA; Miller LR; Shewchuk LM; Wells-Knecht K; Willard DH; Wright LL; Zhou HQ
    J Med Chem; 2004 Jan; 47(3):588-99. PubMed ID: 14736240
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular modeling in cysteine protease inhibitor design.
    Lindvall MK
    Curr Pharm Des; 2002; 8(18):1673-81. PubMed ID: 12132998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.