These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 12133852)

  • 21. Mechanisms of fatigue differ after low- and high-force fatiguing contractions in men and women.
    Yoon T; Schlinder Delap B; Griffith EE; Hunter SK
    Muscle Nerve; 2007 Oct; 36(4):515-24. PubMed ID: 17626289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting optimal electrical stimulation for repetitive human muscle activation.
    Chou LW; Ding J; Wexler AS; Binder-Macleod SA
    J Electromyogr Kinesiol; 2005 Jun; 15(3):300-9. PubMed ID: 15763677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of stimulation frequency versus pulse duration modulation on muscle fatigue.
    Kesar T; Chou LW; Binder-Macleod SA
    J Electromyogr Kinesiol; 2008 Aug; 18(4):662-71. PubMed ID: 17317219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL
    J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A mathematical model that predicts the force-frequency relationship of human skeletal muscle.
    Ding J; Wexler AS; Binder-Macleod SA
    Muscle Nerve; 2002 Oct; 26(4):477-85. PubMed ID: 12362412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of electrical stimulation pattern on quadriceps force production and fatigue.
    Deley G; Laroche D; Babault N
    Muscle Nerve; 2014 May; 49(5):760-3. PubMed ID: 24639131
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sex differences in human skeletal muscle fatigue are eliminated under ischemic conditions.
    Russ DW; Kent-Braun JA
    J Appl Physiol (1985); 2003 Jun; 94(6):2414-22. PubMed ID: 12562681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Muscle performance following fatigue induced by isotonic and quasi-isometric contractions of rat extensor digitorum longus and soleus muscles in vitro.
    Vedsted P; Larsen AH; Madsen K; Sjøgaard G
    Acta Physiol Scand; 2003 Jun; 178(2):175-86. PubMed ID: 12780392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dependence of fatigue properties on the pattern of stimulation in the rat diaphragm muscle.
    Gölgeli A; Ozesmi C; Ozesmi M
    Indian J Physiol Pharmacol; 1995 Oct; 39(4):315-22. PubMed ID: 8582742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of activation pattern on human skeletal muscle fatigue.
    Binder-Macleod SA; Lee SC; Russ DW; Kucharski LJ
    Muscle Nerve; 1998 Sep; 21(9):1145-52. PubMed ID: 9703440
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of random modulation of functional electrical stimulation parameters on muscle fatigue.
    Graham GM; Thrasher TA; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):38-45. PubMed ID: 16562630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Maximal versus submaximal intensity stimulation with variable patterns.
    Doucet BM; Griffin L
    Muscle Nerve; 2008 Jun; 37(6):770-7. PubMed ID: 18335483
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variable frequency trains enhance torque independent of stimulation amplitude.
    Slade JM; Bickel CS; Warren GL; Dudley GA
    Acta Physiol Scand; 2003 Jan; 177(1):87-92. PubMed ID: 12492782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using customized rate-coding and recruitment strategies to maintain forces during repetitive activation of human muscles.
    Chou LW; Kesar TM; Binder-Macleod SA
    Phys Ther; 2008 Mar; 88(3):363-75. PubMed ID: 18174446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changing stimulation patterns improves performance during electrically elicited contractions.
    Scott WB; Binder-Macleod SA
    Muscle Nerve; 2003 Aug; 28(2):174-80. PubMed ID: 12872321
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Associations between force and fatigue in fast-twitch motor units of a cat hindlimb muscle.
    Laouris Y; Bevan L; Reinking RM; Stuart DG
    Can J Physiol Pharmacol; 2004; 82(8-9):577-88. PubMed ID: 15523515
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of stimulation intensity on the physiological responses of human motor units.
    Binder-Macleod SA; Halden EE; Jungles KA
    Med Sci Sports Exerc; 1995 Apr; 27(4):556-65. PubMed ID: 7791587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A predictive fatigue model--I: Predicting the effect of stimulation frequency and pattern on fatigue.
    Ding J; Wexler AS; Binder-Macleod SA
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):48-58. PubMed ID: 12173739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diminished fatigue at reduced muscle length in human skeletal muscle.
    Lee SC; Braim A; Becker CN; Prosser LA; Tokay AM; Binder-Macleod SA
    Muscle Nerve; 2007 Dec; 36(6):789-97. PubMed ID: 17691103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intracellular pH during sequential, fatiguing contractile periods in isolated single Xenopus skeletal muscle fibers.
    Stary CM; Hogan MC
    J Appl Physiol (1985); 2005 Jul; 99(1):308-12. PubMed ID: 15761085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.